Aviatreid.ru

Прокат металла "Авиатрейд"
12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Трансформатор тока перед выключателем

Трансформатор тока перед выключателем

Чертежи и проекты

Разделы АС, АР, КЖ, КМ, КМД и т.д.
Разделы ЭМ, ЭС, ЭО, ЭОМ и т.д.
Разделы ОВ, ОВиК, ТМ, ТС и т.д.
Разделы ПС, ПТ, АПС, ОС, АУПТ и т.д.
Разделы ТХ и т.д.
Разделы ВК, НВК и т.д.
Разделы СС, ВОЛС, СКС и т.д.
Разделы АВТ, АВК, АОВ, КИПиА, АТХ, т.д.
Разделы АД, ГП, ОДД т.д.
Чертежи станков, механизмов, узлов
Базы чертежей, блоки

Подразделы

для студентов всех специальностей
Котлы и котельное оборудование

Наружное противопожарное водоснабжениеФормат dwg pdf

Для нужд пожарного водопровода проектом предусматривается устройство двух резервуаров по 200 м3 каждый, а также насосная станция.

В архмиве 3d модель насоса HYDRO MX-A

СИСТЕМЫ ЭЛЕКТРООБОРУДОВАНИЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ

Системы электрооборудования жилых и общественных зданий

Программа расчета балок Мост_Х1. Программа «Мост_Х» предназначена для определения грузоподъёмности балочных разрезных пролётных строений автодорожных мостов и путепроводов, находящихся на прямом в плане участке автодороги.

Формат Exel

Программа в свободном доступе, скачать можно после регистрации

Блочно-модульная котельная для здания пришахтинского овдФормат dwg

г. Караганда. Казахстан

Блочно-модульная котельная для здания пришахтинского овд

Планировка детского лагеряФормат dwg

Исходный текст на китайском

Чертежи и узлы сложной деревянной крыши частного домаЧертежи и узлы сложной деревянной крыши для частного дома в dwg

Чертежи гирлянд в dwg, удлиненная и стандартнаяЧертежи гирлянд в dwg, удлиненная и стандартная

ППР разработан на производство работ по расширению просек ВЛ-220кВ и утилизации порубочных остатковППР разработан на производство работ по расширению просек ВЛ-220кВ и утилизации порубочных остатков

Проект видеонаблюдения магазинаIP-видеорегистратор CMD-NVR5109 V2 поддерживает подключение до 9 IP-камер с разрешением 1920×1080 и скоростью записи 25 к/с на каждый канал.

Глубина архива видеорегистратора составляет один месяц при постоянной круглосуточной записи с 8 IP-видеокамер за счет установки жесткого диска объемом 6 ТБ.

Формат dwg

Рабочий проект системы видеонаблюдения СВН дома в dwgРабочий проект системы видеонаблюдения СВН дома в dwg

Расположение трансформаторов тока на подстанции высокого напряжения

Трансформаторы тока используются для защиты, контроля и измерения. Только первая функция имеет какое-либо отношение к местоположению трансформатора тока.
В идеальном случае трансформаторы тока должны находиться на стороне источника питания автоматического выключателя, который отключается защитой, так что автоматический выключатель входит в защитную зону.

Во многих схемах поток мощности может быть в любом направлении, и тогда становится необходимо определить, какое место повреждения наиболее важно или вероятно, и найти трансформаторы тока на стороне автоматического выключателя, удаленные от этих неисправностей. В случае генераторных (и некоторых трансформаторных) цепей необходимо решить, защищать ли защиту от сбоев в генераторе или защитить генератор от системных неисправностей.

Трансформаторы тока часто могут быть расположены в фазных соединениях генератора на нейтральном конце. Они защищают генератор от системных неисправностей и в значительной степени обеспечивают защиту от неисправностей в генераторе.

Когда трансформаторы тока могут быть размещены внутри автоматического выключателя, они в большинстве случаев могут быть размещены с обеих сторон выключателя, а распределение трансформаторов тока должно обеспечить требуемое перекрытие защитных зон.

При некоторых конструкциях выключателя размещение трансформатора тока может быть только с одной стороны, и может потребоваться учитывать последствия положения выключателя в подстанции, прежде чем принимать решение об электрическом расположении трансформаторов тока.

Практика показывает, что это самое легкое место для размещения, а также оптимальное положение, когда требуется защита зоны шины.

Однако риск сбоя между трансформаторами тока и автоматическим выключателем и внутри самого выключателя очень мал, поэтому экономия на размещении трансформаторов тока может иметь важное влияние на их местоположение.

Если требуется размещение отдельного трансформатора тока, стоимость отдельно смонтированных трансформаторов тока, а также дополнительное пространство подстанции, требуемое почти всегда, приводят к тому, что они расположены только на одной стороне автоматического выключателя. На практике это, как правило, на стороне цепи автоматического выключателя.

Читайте так же:
Электромагнитный привод масляных выключателей

Часто бывает возможным разместить трансформаторы тока на втулках силового трансформатора или на стенных втулках. Когда это делается, обычно по экономическим причинам можно сэкономить и использовать отдельно смонтированные трансформаторы тока.

Трансформаторы тока, установленные на трансформаторе, имеют незначительные недостатки в том отношении, что получается более длинная длина проводника и, особенно, проходной изолятор находится за пределами защищаемой зоны, а в случае снятия трансформатора должны быть отключены цепи защиты.

Следует отметить, что расположение индивидуальных трансформаторов тока внутри блока предпочтительно должно быть организовано таким образом, чтобы перекрывались любые защитные зоны и, чтобы трансформаторы тока для других функций были включены в защищаемую зону.

В условиях байпаса (где это предусмотрено) цепь переключается с помощью автоматического выключателя шины.

Расположение трансформаторов тока зависит от того, предоставляются ли защитные ретрансляторы и трансформаторы тока схемой соединителей шины или используются ли защитные реле и трансформаторы тока схемы с сигналом отключения, который направляется на автоматический выключатель шины в режиме байпас. Если используется последний метод, то трансформаторы тока должны быть отдельно установлены на стороне линии байпасного изолятора.

Преимущество этого метода заключается в том, что защита цепи не изменяется до возможной более низкой защиты схемы соединителя шины. С другой стороны, цепь должна быть выведена из эксплуатации для работы с трансформаторами тока.

Необходимо также учитывать потребность в непрерывном измерении обходного контура.

Возможные расположения трансформаторов тока

На рисунках 1 (a), (b) и (c) показаны возможные местоположения трансформаторов тока в части ячеистой подстанции.

В схеме (а) трансформаторы тока суммируются, чтобы приравнять к току питателя и управлять защитой цепи. Цепь сетчатой ​​цепи — Схема (а)

Защита также охватывает часть сетки, и с перекрывающимися трансформаторами тока, как показано, вся сетка включена в дискриминационные защитные зоны. Поскольку ток питателя может быть значительно меньше, чем возможный ток сетки, соотношение трансформаторов тока сетки может быть слишком большим, чтобы обеспечить лучшую защиту фидера.

схеме (b) трансформаторы тока находятся в фидерной цепи, и поэтому их соотношение может быть выбрано для обеспечения наилучшей защиты. Цепь сетки — Устройство (b)

Однако теперь нет дискриминационной защиты для сетки. Обратите внимание, что трансформаторы тока могут быть расположены как внутри, так и снаружи от размыкателя фидера, причем выбор зависит от простоты отключения контура фидера и нежелательности открытия сетки, если требуется обслуживание трансформатора тока.

Схема, показанная на (c), представляет собой комбинацию (a) и (b) с, при необходимости, трансформаторы тока могут быть с разной степенью сжатия в цепи фидера. . Однако это устройство требует наличия трех комплектов трансформаторов тока, а не двух и одного, как в устройствах (а) и (б).

Цепи сетчатой ​​цепи — Схема (c)

Аналогичные схемы возможны с перекрещивающимися подстанциями с небольшой разницей, что в конце диаметра защита становится защитой для сборной шины вместо фидера. Все токи диаметра суммируются для защиты зоны шины.

Высоковольтный выключатель со встроенным оптическим трансформатором тока

Рис. 1. Трехмерная модель полюса выключателя ВГТ-УЭТМ®-500 со встроенным ТТЭО

В качестве источников измерительного сигнала для создания систем релейной защиты, противоаварийной автоматики, систем автоматического управления выключателем, коммерческого учета и телеметрии применяются электромагнитные трансформаторы тока (ТТ). Они выпускаются или в маслонаполненном, или в элегазовом исполнении. Но в любом случае для напряжений уровня 330–500 кВ эти изделия представляют собой внушительную конструкцию весом в 500–800 кг и высотой до 7 метров. Для их монтажа и установки требуются бетонные основания и стальные конструкции, значительные площади на территории распределительного устройства (ОРУ). Применение элегаза или масла в качестве изолирующей среды вынуждает тратить значительные средства на техническое обслуживание ТТ в процессе их жизненного цикла. Используемый в конструкции этих ТТ принцип электромагнитного преобразования приводит к эффектам намагничивания железа трансформаторов, искажению формы и величины вторичного измерительного тока и как следствие — к ложной работе вторичных систем автоматики и управления.

Читайте так же:
Что внутри двухклавишного выключателя

Компания «Профотек» совместно с компанией «УЭТМ» договорились о создании комплексного решения на базе российских технологий — элегазового выключателя 500 кВ со встроенным оптическим трансформатором тока и автоматикой управления. В конструкции комплексных изделий на базе выключателя ВГТ-УЭТМ ® -500 будут использованы электронные оптические трансформаторы тока (ТТЭО) производства «Профотек».

Рис. 2. Компоновка полюса колонкового элегазового выключателя ВГТ-УЭТМ®-500 со встроенным волоконно-оптическим трансформатором тока от «Профотек»

Применение цифрового оптического ТТ исключает проявление эффектов магнитного насыщения. Оптический трансформатор обладает очень большим динамическим диапазоном рабочих токов и вследствие использования оптико-электронных систем преобразования тока выдает на выходе точный и неискаженный цифровой сигнал. Оптический ТТ не содержит масел и элегаза в своей конструкции и в связи с этим требует гораздо меньшего объема технического обслуживания. Кроме того, оптический трансформатор тока не поддерживает горения (он не содержит горючих материалов) и, в связи с этим обеспечивает повышенную надежность работы. Цифровой измерительный сигнал, вырабатываемый оптическим трансформатором, позволяет создавать системы измерений и защит с совершенно новыми качествами. Так, повышенное быстродействие цифровой системы измерений позволит очень точно определять моменты перехода тока через 0 и подавать команду на отключение выключателя в аварийных режимах именно в этот момент, а это поможет существенно увеличить ресурс работы высоковольтного выключателя.

Кроме того, в современных ОРУ энергетических объектов нередко имеют место «мертвые» зоны, обусловленные разнесением мест установки выключателей и ТТ. Короткие замыкания (КЗ) в таких зонах ликвидируются только действием устройства резервирования отказа выключателя (УРОВ). Однако длительность периода возмущения, в течение которого отрабатывает УРОВ, может привести к нарушению динамической устойчивости генерирующего оборудования. Одним из решений по ликвидации «мертвых» зон является установка высоковольтного выключателя со встроенным оптическим ТТ. Это позволит исключить «мертвые» зоны в существующей конфигурации ОРУ без существенных затрат на изменение компоновки распределительного устройства и строительство дополнительных сетевых элементов в схемах выдачи мощности крупных энергообъектов.

Разработка высоковольтного выключателя с интегрированным оптическим трансформатором позволит создать «цифровой выключатель», который логично вписывается в технологию цифровой подстанции.

Создание колонкового выключателя с интегрированным оптическим трансформатором тока позволит существенно снизить материальные затраты при новом строительстве, так как отпадает необходимость в монтаже значительного количества вспомогательных конструкций (бетонные основания и т. п.) и позволит сократить размеры площади на ОРУ, необходимой для монтажа высоковольтных элементов. Разработка высоковольтного выключателя с интегрированным оптическим трансформатором позволит создать «цифровой выключатель», который логично вписывается в технологию цифровой подстанции. С точки зрения эксплуатации предлагаемое решение представляется оптимальным, так как конструкция самого выключателя и органов управления им не изменяются, что позволяет рассчитывать на упрощенную процедуру подготовки эксплуатационного персонала к использованию комбинированного изделия и не вызовет сложностей при его монтаже и наладке. При этом, благодаря применению оптических технологий, у выключателя появляются дополнительные функциональные возможности и новые качественные характеристики, такие как наблюдаемость, безопасность, быстродействие и должная чувствительность систем защиты.

Читайте так же:
Температура эксплуатации автоматического выключателя

Рис. 3. Интеллектуальный узел управления выключателем для цифровой подстанции

Выбор в качестве базы для создания «цифрового выключателя» ВГТ-УЭТМ ® -500 обусловлен серьезным моральным устареванием воздушных выключателей серий ВНВ и ВВБ, которые в России являются наиболее распространенными коммутационными аппаратами на класс напряжения 500 кВ. Эти выключатели вводились в эксплуатацию с конца 70-х до начала 80-х годов прошлого века. При среднем сроке службы, не превышающем 25 лет, данное электрооборудование в основной массе практически выработало свой ресурс. Как следствие, остро стоит вопрос о замене данного оборудования на более современные аналоги. Установка же колонкового элегазового выключателя взамен устаревших воздушных на действующих подстанциях не требует проведения значительных подготовительных работ.

Следует дополнить, что на текущем этапе проектирования комплексного изделия прорабатывается возможность дооснащения ранее установленных выключателей ВГТ-УЭТМ ® -500 комплектами модернизации, включающими в себя сами оптические трансформаторы, элементы для их подсоединения к полюсу серийного выключателя и все сопутствующие электронные блоки. Таким образом, в недалеком будущем будет возможно не только создавать новые цифровые подстанции, но и проводить «оцифровку» старых с минимальными затратами.

Изделие планируется испытать и подготовить к установке для проведения опытной промышленной эксплуатации в 2019 году.

Словарь специальных терминов

Азбука гидроэнергетики

Ячейка (электрической) подстанции (распределительного устройства)

Часть электрической подстанции (распределительного устройства), содержащая всю или часть коммутационной и (или) иной аппаратуры одного присоединения.

Распределительное устройство напряжением 6 (10) кВ получает электроэнергию непосредственно от трансформаторов или по линиям напряжением 6 (10) кВ с шин подстанции. Выбор числа секций шин зависит от числа ячеек отходящих линий и наличия резкопеременных нагрузок, которые требуется подключить к отдельным секциям РУ.
Каждую отходящую от сборных шин РУ линию подключают к шинам через ячейку. В ячейку входят выключатель (масляный, элегазовый, вакуумный или ВНГ1), разъединители и трансформаторы тока. Все оборудование ячейки комплектуется в шкафу. Применяют ячейки типов КСО (комплектные стационарные одностороннего обслуживания) и КРУ. В последних выключатель не закреплен стационарно, а установлен на тележке. Во время ремонта его можно выкатить из шкафа и доставить в мастерскую.


Рис. 1. Ячейки отходящих линий напряжением 6 (10) кВ:
а — ячейка КСО с шинным разъединителем, выключателем, трансформатором тока, линейным разъединителем; б — ячейка КРУ с выкатным выключателем; в — ячейка КРУ с предохранителем; г, д — ячейки КСО с выключателем нагрузки и предохранителем; е — ячейка КСО с выключателем нагрузки и шинным разъединителем


Рис. 2. Камера типа КСО-366 с выключателем нагрузки:
1, 6 — приводы выключателя нагрузки и заземляющего разъединителя; 2 — мнемосхема; 3 — кожух; 4 — надпись с назначением камеры; 5 — дверь; 7 — заземляющий разъединитель; 8 — каркас; 9 — изолятор; 10 — выключатель нагрузки; 11 — предохранитель; 12 — трансформатор тока

На рис. 1 показаны состав оборудования и последовательность включения аппаратов в ячейках разного вида и назначения. На схеме 1. а) приведена ячейка КСО закрытого РУ с выключателем QF, шинным разъединителем QS1, линейным разъединителем QS2 и трансформаторами тока ТА. Линейный разъединитель устанавливают в тех случаях, когда на выключатель во время ремонта может быть подано напряжение со стороны линии. На схеме 1. б) показана ячейка КРУ с выкатным выключателем QF. Здесь роль шинного и линейного разъединителей выполняют втычные контакты (штепсельные разъемы). На схеме 1. в) приведена ячейка с выключателем нагрузки и предохранителем (ВНП). Такой выключатель может быть выкатным, как показано на схеме (ячейка КРУ), или стационарным (ячейка КСО). В последнем случае установка разъединителей вместо штепсельных разъемов необязательна. Схема 1. г) предпочтительней, чем схема 1. д), так как снятие предохранителей FU создает видимый разрыв при ремонте выключателя нагрузки QW. При схеме 1. е) для ремонта выключателя нагрузки QW требуется снятие шин. Во избежание этого приходится добавлять в ячейку шинный разъединитель QS, как показано на схеме е, что приводит к удорожанию ячейки и увеличению ее высоты на 0,5 м.

Читайте так же:
Характеристики срабатывания автоматических выключателей iek


Рис- 3 . Камера типа КСО-292;
1 — шинный разъединитель; 2 — приводы разъединителей; 3 — привод выключателя; 4 — линейный разъединитель; 5 — масляный выключатель

Рис. 4. Шкаф ввода КРУН:
1 — главные шины; 2 — шинный разъединитель; 3, 9 — проходные изоляторы; 4 — масляный выключатель; 5 — трансформатор тока; 6 — привод выключателя: 7 — привод разъединителя; 8 — линейный разъединитель; 10 — дверка

Все оборудование ячеек КРУ и КСО размещается в шкафах. Объемы шкафов для ячеек КРУ в 1,5 — 2 раза меньше, чем для аналогичных ячеек КСО, благодаря более компактному размещению аппаратуры. Однако из-за более высокой стоимости масляных выключателей по сравнению с ВНП ячейки КСО с ВНП дешевле, чем ячейки КРУ с масляным выключателем. В целях экономии средств рекомендуется применять ячейки с ВНП там, где это возможно по техническим характеристикам (на отходящих от шин РУ линиях, питающих ТП мощностью до 1600 кВт, батареи конденсаторов мощностью до 400 кВт, электродвигатели мощностью до 1500 кВт) при условии, что за весь период времени между ремонтами производится не более ста включений—отключений.


Рис. 5. Шкаф серии K-XIII с масляным выключателем ВМП-10К: 1 — выкатная тележка; 2 — отсек выкатной тележки; 3 — отсек сборных шин

Конструкция шкафов ячеек КРУ и КСО разнообразна. Только выкатных ячеек КРУ насчитывается свыше 50 разновидностей в зависимости от назначения, вида аппаратов, типа вводов, способа передачи энергии (кабель, шины, BJ1). Несколько десятков модификаций имеют и ячейки КСО. Внутри шкафы делятся на отсеки сплошными стальными перегородками. Для большей безопасности ремонта шины размещают в одном отсеке, выключатель — в другом, разъединитель, трансформатор тока и кабельный вывод — в третьем, аппараты измерений и реле — в четвертом. Наиболее удобны для ремонта ячейки КРУ с выкатными выключателями.
На рис. 2 показан шкаф (камера) типа КСО-366, а на рис. 3 — типа КСО-292, которые могут комплектоваться выключателями ВМГ-10 и ВЭМ-10Э с приводами ПП-67 и ПЭ-11 и выключателями нагрузки ВНП-16 и ВНП-17 с приводами ПР-17, ПРА-17. Изготовляет камеры АО «Альстом — Свердловский электромеханический завод».
Для комплектных РУ внутренней установки чаще всего применяют шкафы серии КРУ2-10, КРУ2-10/2750, КР10/500, K-XII, K-XV.

Рис. 6. Примеры компоновки оборудования РП напряжением 6 (10) кВ:
а — отдельно стоящий РП; б — РП, совмещенный с подстанцией напряжением 6 (10)/0.4 кВ; 1 — ячейки КРУ или КСО; 2 — конденсаторы; 3 — щит; 4 — вводное устройство; 5 — трансформатор
Комплектные РУ наружной установки (КРУН) напряжением 6 (10) кВ формируют из шкафов серии К-112, К-104М, К-105, К-105мс, К-ХШ, К-XXV и др. Шкафы серии КРУН (рис. 4) имеют местный подогрев, обеспечивающий нормальную работу приводов, выключателей, приборов учета и автоматики.
В шкафах серии К-ХШ (рис. 5), рассчитанных на ток 600. 1500 А, устанавливают выключатели типов ВМП-10К и ВМП- 10П с приводами ПЭ-11 и ПП-67.
Распределительный пункт (РП) представляет собой распределительное устройство, предназначенное для приема и распределения электроэнергии при напряжении 6. 20 кВ. На предприятиях, внешнее электроснабжение которых осуществляется при напряжении 6 (10) кВ, сооружается главный распределительный пункт (ГРП), а ГПП в таких системах электроснабжения не требуется.
Примеры компоновки оборудования РП напряжением 6 (10) кВ приведены на рис. 6. В одном помещении с ячейками КРУ или КСО 1 расположены шкаф вводного устройства 4 и щит 3. Конденсаторные батареи 2 и трансформатор 5расположены в отдельных помещениях.

Читайте так же:
Сечение кабелей под выключатель


Рис. 7. Схема РП с расширенной возможностью подключения потребителей

Распределительные пункты обычно сооружают с одной системой шин, разделенной на две секции. На рис. 7 приведена схема РП, применяемого в качестве ГРП. Вводные линии J11 и J12 напряжением 6 (10) кВ от подстанций подключают к разным секциям сборных шин через масляные выключатели. Между секциями устанавливают секционные выключатели, в нормальных условиях работы находящиеся в отключенном состоянии. Непосредственно к линиям J11 и JT2 подключают трансформаторы собственных нужд и трансформаторы напряжения, с помощью которых цепи управления и измерения получают питание еще до включения выключателей вводов. Линии напряжением 6(10) кВ, отходящие к синхронным двигателям (СД), вводы и секционный аппарат подключают к сборным шинам через ячейки КРУ с выкатными выключателями.


Рис. 8. Схема присоединения потребителей непосредственно к РП напряжением 10 кВ


Рис. 9. Схема цехового РП напряжением 6 (10) кВ с одиночной системой шин

Для электроснабжения потребителей первой категории может использоваться схема РП, представленная на рис. 8.
Вводные и секционные выключатели обеспечивают возможность автоматического ввода резерва (АВР). Использование ячеек КРУ рекомендуется в наиболее сложных и ответственных установках с числом ячеек 15 и более. В остальных случаях рекомендуется применение более дешевых и требующих меньших площадей ячеек КСО со стационарным расположением оборудования и односторонним обслуживанием. При числе отходящих линий меньше восьми сооружение РП в цехе нерационально и высоковольтные электроприёмники подключают к РП соседнего цеха или непосредственно к шинам ГПП.
Для потребителей второй категории, не требующих АВР, рекомендуется секционировать шины РП двумя разъединителями и не устанавливать выключатели на вводах. Соответствующая схема цехового РП показана на рис. 9. Два секционных разъединителя QS3, QS4 предусматриваются для обеспечения безопасного ремонта любого из них без отключения обеих секций шин одновременно.
Согласно СИ 174-75, выключатели на вводах и между секциями шин при питании потребителей второй категории следует устанавливать только на крупных РП мощностью свыше 10 MB А. На всех присоединениях с номинальным током до 100 А при напряжении 10 кВ и до 200 А при напряжении 6 кВ рекомендуется устанавливать ячейки с выключателями нагрузки и предохранителями (ВНП). Предохранители устанавливают перед выключателями нагрузки для создания видимого разрыва при ремонте последних. Часть ячеек того же РП, в которых нельзя применять ВНП, комплектуют масляными выключателями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector