Aviatreid.ru

Прокат металла "Авиатрейд"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выключатели / Модульные автоматы на постоянный ток PL7

Выключатели / Модульные автоматы на постоянный ток PL7

Отключающая способность 10 кА (МЭК 60898); защитные характеристики B, C, D; номинальное напряжение 230/400 В AC; 48 В DC; номинальный ток 0,16 — 63 A; количество полюсов 1, 1+N, 2, 3, 3+N; монтаж на дин-рейку; сечение подключаемого провода 25 мм2; цветное обозначение управляющих ручек согласно значению In — возможность выбора вводных и выводных зажимов

Заменим автоматические выключатели ABB, Schneider Electric, Siemens, Legrand на великолепные, качественные, экономичнее, дешевле и всегда на складе модульные автоматы EATON, потому что они просто лучше:

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 18.10 € 16.29€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 18.10 € 16.29€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 18.10 € 16.29€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 20.29 € 18.26€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 22.79 € 20.51€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 39.97 € 35.97€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 41.14 € 37.03€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 41.14 € 37.03€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 41.14 € 37.03€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 41.14 € 37.03€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 41.93 € 37.74€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 48.47 € 43.62€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 49.58 € 44.62€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 51.60 € 46.44€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 52.08 € 46.87€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 53.08 € 47.77€

Статус: СКЛАДСКОЙ

Цена + бесплатная доставка = Купить за 78.06 € 70.25€

Eaton / Moeller / Cooper — автоматизация и электротехника

Оборудование Moeller широко известно во всем мире и активно используется в системах распределения электроэнергии и автоматизации административных и жилых площадей. С апреля 2008 года Moeller входит в состав корпорации Eaton

Надежность икачество определяет кнопка, а успех — люди. Позвоните нам по телефону (495) 22-39-220 / (8 800) 555-33-20 д.4 или оформите заказ у специалиста по электронной почте:
Заказать!
Мы сделаем всё возможное, чтобы вы стали нашим постоянным клиентом, а доставка у нас всегда бесплатная.

Клеммы — Инструмент — Источники питания — Контакторы — Силовые автоматы — Предохранители — Автоматические выключатели — Автоматы защиты двигателя — Кнопки и световые колонны — Датчики давления и потока — УЗО — Предохранители

Компания «Денол» — официальный дистрибьютор Moeller / EATON, Phoenix Contact (Феникс Контакт), Ifm electronic, Rittal, ETI (Словения), Socomec. Покупайте онлайн или по телефону: (495) 22-39-220 / (8 800) 555-33-20.

Какие бывают виды и типы автоматических выключателей в электрических сетях

Какие бывают виды и типы автоматических выключателей в электрических сетяхОсновное отличие этих коммутационных аппаратов от всех остальных подобных устройств состоит в комплексном сочетании способностей:

1. длительно поддерживать номинальные нагрузки в системе за счет надежного пропускания через свои контакты мощных потоков электроэнергии;

2. защищать работающее оборудование от случайно возникающих неисправностей в электрической схеме за счет быстрого снятия с него питания.

При нормальных условиях эксплуатации оборудования оператор может вручную коммутировать нагрузки автоматическими выключателями, обеспечивая:

разные схемы питания;

изменение конфигурации сети;

вывод оборудования из работы.

Аварийные ситуации в электрических системах возникают мгновенно и стихийно. Человек не способен быстро среагировать на их появление и принять меры к устранению. Эта функция возлагается на автоматические устройства, встроенные в выключатель.

В энергетике принято деление электрических систем по видам тока:

Кроме того, существует классификация оборудования по величине напряжения на:

низковольтное — менее тысячи вольт;

высоковольтное — все остальное.

Для всех типов этих систем создаются свои автоматические выключатели, предназначенные для многократной работы.

Автоматические выключатели

Цепи переменного тока

У этой категории выключателей существует огромный ассортимент моделей, выпускаемых современными производителями. Он классифицируется по напряжению сети и токовым нагрузкам.

Электрооборудование до 1000 вольт

По мощности передаваемой электроэнергии автоматические выключатели в цепях переменного тока условно подразделяют на:

2. в литом корпусе;

3. силовые воздушные.

Специфическое исполнение в виде небольших стандартных модулей с шириной кратной 17,5 мм определяет их название и конструкцию с возможностью установки на Din-рейку.

Внутреннее устройство одного из подобных автоматических выключателей показано на картинке. Его корпус полностью изготовлен из прочного диэлектрического материала, исключающего поражение человека электрическим током.

Устройство автоматического выключателя

Питающий и отходящий провода подключаются на верхний и нижний клеммный зажим соответственно. Для ручного управления состоянием выключателя установлен рычаг с двумя фиксированными положениями:

верхнее предназначено для подачи тока через замкнутый силовой контакт;

нижнее — обеспечивает разрыв цепи питания.

Каждый из подобных автоматов рассчитан на длительную работу при определенной величине номинального тока (Iн). Если же нагрузка становится больше, то происходит разрыв силового контакта. Для этого внутри корпуса размещено два вида защит:

1. тепловой расцепитель;

2. токовая отсечка.

Принцип их работы позволяет объяснить времятоковая характеристика, выражающая зависимость времени срабатывания защиты от проходящего сквозь нее тока нагрузки или аварии.

Представленный на картинке график приведен для одного конкретного автоматического выключателя, когда зона работы отсечки выбрана в 5÷10 крат номинального тока.

Времятоковая характеристика автоматического выключателя

При первоначальной перегрузке работает тепловой расцепитель, выполненный из биметаллической пластины, которая при увеличенном токе постепенно нагревается, изгибается и воздействует на отключающий механизм не сразу, а с определенной задержкой по времени.

Таким способом он позволяет небольшим перегрузкам, связанным с кратковременным подключением потребителей, самоустраниться и исключить излишние отключения. Если же нагрузка обеспечит критический нагрев проводки и изоляции, то происходит разрыв силового контакта.

Читайте так же:
Реверсивный выключатель нагрузки iek

Когда же в защищаемой цепи возникает аварийный ток, способный своей энергией сжечь оборудование, то в работу вступает электромагнитная катушка. Она импульсом за счет броска возникшей нагрузки выкидывает сердечник на отключающий механизм с целью мгновенного прекращения запредельного режима.

На графике видно, что чем выше токи коротких замыканий, тем быстрее происходит их отключение электромагнитным расцепителем.

По этим же принципам работает бытовой предохранитель автоматический ПАР.

При разрыве больших токов создается электрическая дуга, энергия которой может выжечь контакты. Чтобы исключить ее действие в автоматических выключателях используется дугогасительная камера, разделяющая дуговой разряд на маленькие потоки и гасящая их за счет охлаждения.

Кратность отсечек модульных конструкций

Электромагнитные расцепители настраиваются и подбираются под работу с определенными нагрузками потому, что при запуске они создают разные переходные процессы. Например, во время включения различных светильников кратковременный бросок тока из-за изменяющегося сопротивления нити накала может приближаться к трем кратам номинальной величины.

Поэтому для розеточной группы квартир и цепей освещения принято выбирать автоматические выключатели с времятоковой характеристикой типа «В». Она составляет 3÷5 Iн.

Асинхронные двигатели при раскрутке ротора с приводом вызывают бо́льшие токи перегрузок. Для них подбирают автоматы с характеристикой «С», или — 5÷10 Iн. За счет созданного запаса по времени и току они позволяют двигателю раскрутиться и гарантированно выйти на рабочий режим без излишних отключений.

В промышленных производствах на станках и механизмах встречаются нагруженные привода, подключенные к двигателям, которые создают более увеличенные перегрузки. Для таких целей применяют автоматические выключатели характеристики «D» с номиналом 10÷20 Iн. Они хорошо себя зарекомендовали при работе в схемах с активно-индуктивными нагрузками.

Кроме того, у автоматов есть еще три вида стандартных времятоковых характеристик, которые применяются в специальных целях:

1. «А» — у длинных проводок с активной нагрузкой или защит полупроводниковых устройств с величиной 2÷3 Iн;

2. «K» — для выраженных индуктивных нагрузок;

3. «Z» — у электронных устройств.

В технической документации у разных производителей кратность срабатывания отсечки для последних двух типов может немного отличаться.

Автоматические выключатели в литом корпусе

Этот класс устройств способен коммутировать бо́льшие токи, чем модульные конструкции. Их нагрузка может достигать величины до 3,2 килоампера.

Автоматические выключатели в литом корпусе

Они изготавливаются по тем же принципам, что и модульные конструкции, но, с учетом повышенных требований к пропусканию увеличенной нагрузки, им стараются придать относительно маленькие габариты и высокое техническое качество.

Эти автоматы предназначены для безопасной работы на промышленных объектах. По величине номинального тока их условно делят на три группы с возможностью коммутации нагрузок до 250, 1000 и 3200 ампер.

Конструктивное исполнение их корпуса: трех- или четырехполюсные модели.

Силовые воздушные выключатели

Они работают в промышленных установках и оперируют токами очень больших нагрузок до 6,3 килоампера.

Воздушные автоматические выключатели

Это наиболее сложные устройства коммутационных аппаратов низковольтного оборудования. Они используются для работы и защиты электрических систем в качестве вводных и отходящих аппаратов распределительных установок повышенных мощностей и для подключения генераторов, трансформаторов, конденсаторов или мощных электродвигателей.

Схематичное изображение их внутреннего устройства показано на картинке.

Силовой воздушный выключатель

Здесь используется уже двойной разрыв силового контакта и установлены дугогасящие камеры с решетками на каждой стороне отключения.

В алгоритме работы участвуют катушка включения, замыкающая пружина, мотор-привод взвода пружины и элементы автоматики. Для контроля протекающих нагрузок встроен трансформатор тока с защитной и измерительной обмоткой.

Электрооборудование выше 1000 вольт

Автоматические выключатели высоковольтного оборудования относятся к очень сложным техническим устройствам и изготавливаются строго индивидуально под каждый класс напряжения. Они используются, как правило, на трансформаторных подстанциях.

К ним предъявляются требования:

относительной бесшумности при работе;

Нагрузки, которые разрывают высоковольтные выключатели при аварийном отключении, сопровождаются очень сильной дугой. Для ее гашения используются различные способы, включая разрыв цепи в специальной среде.

В состав такого выключателя входят:

Один из таких коммутационных аппаратов показан на фотографии.

Элекгазовый выключатель 110 кВ

Для качественной работы схемы в подобных конструкциях, кроме рабочего напряжения, учитывают:

номинальную величину тока нагрузки для надежной ее передачи во включенном состоянии;

максимальный ток короткого замыкания по действующему значению, который способен выдержать отключающий механизм;

допустимую составляющую апериодического тока в момент разрыва схемы;

возможности автоматического повторного включения и обеспечение двух циклов АПВ.

По способам гашения дуги во время отключения выключатели классифицируют на:

Для надежной и удобной работы они снабжаются приводным механизмом, который может использовать один или несколько видов энергий либо их сочетаний:

давления сжатого воздуха;

электромагнитного импульса от соленоида.

В зависимости от условий применения они могут создаваться с возможностью работы под напряжением от одного и до 750 киловольт включительно. Естественно, что они имеют разную конструкцию. габариты, возможности автоматического и дистанционного управления, настройку защит для безопасной эксплуатации.

Вспомогательные системы таких автоматических выключателей могут иметь очень сложную разветвленную структуру и размещаться на дополнительных панелях в специальных технических зданиях.

Цепи постоянного тока

В этих сетях тоже работает огромное число автоматических выключателей, обладающих разными возможностями.

Электрооборудование до 1000 вольт

Здесь массово внедряются современные модульные устройства, имеющие возможность крепления на Din-рейку.

Они успешно дополняют классы старых автоматов типа АП-50, АЕ и других подобных, которые закреплялись на стенках щитов винтовыми соединениями.

Модульные конструкции постоянного тока имеют такое же устройство и принцип работы, как их аналоги на переменном напряжении. Они могут выполняться одним или несколькими блоками и подбираются по нагрузке.

Электрооборудование выше 1000 вольт

Высоковольтные автоматические выключатели для постоянного тока работают на установках электролизного производства, металлургических промышленных объектах, железнодорожном и городском электрифицированном транспорте, предприятиях энергетики.

Высоковольтные автоматические выключатели постоянного тока

Основные технические требования к работе подобных устройств соответствуют их аналогам на переменном токе.

Читайте так же:
Почему горят диоды при выключенном выключателе

Ученым шведско-швейцарской компании ABB удалось разработать высоковольтный выключатель постоянного тока, сочетающий в своем устройстве две силовые конструкции:

Он получил название гибридного (HVDC) и использует технологию последовательного гашения дуги сразу в двух средах: гексафторида серы и вакуума. Для этого собрана следующее устройство.

Устройство гибридного выключателя

На верхнюю шину гибридного вакуумного выключателя подводится напряжение, а с нижней шины элегазового — снимается.

Силовые части обоих коммутационных устройств соединены последовательно и управляются своими индивидуальными приводами. Чтобы они одновременно работали создано устройство управления синхронизированных координатных операций, которое передает команды на управляющий механизм с независимым питанием по оптоволоконному каналу.

За счет применения высокоточных технологий разработчикам конструкции удалось достичь согласованности действий исполнительных механизмов обоих приводов, которая укладывается в промежуток времени менее одной микросекунды.

Управление выключателем происходит от блока релейной защиты, встроенного через ретранслятор в линию электропередачи.

Гибридный выключатель позволил значительно повысить эффективность составных элегазовых и вакуумных конструкций за счет использования их совместных характеристик. При этом удалось реализовать преимущества перед другими аналогами:

1. способность надежно отключать токи КЗ при высоковольтном напряжении;

2. возможность небольшого усилия для проведения коммутаций силовых элементов, которая позволила значительно уменьшить габариты и. соответственно, стоимость оборудования;

3. доступность выполнения различных стандартов для создания конструкций, работающих в составе отдельного выключателя или компактных устройств на одной подстанции;

4. способность устранять последствия быстро возрастающего восстанавливающегося напряжения;

5. возможность формирования базового модуля для работы с напряжениями до 145 киловольт и выше.

Отличительная черта конструкции — способность разрывать электрическую цепь за 5 миллисекунд, что практически невозможно выполнять силовыми устройствами других конструкций.

Гибридное устройство выключателя отмечено в числе десяти лучших разработок за год по версии технологического обзора МТИ (Массачусетского технологического института).

Подобными исследованиями занимаются и другие производители электротехнического оборудования. Они тоже добились определенных результатов. Но компания АВВ опережает их в этом вопросе. Ее руководство считает, что при передаче электроэнергии переменного тока происходят ее большие потери. Их значительно можно снизить, используя цепи высоковольтного постоянного напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Автоматические выключатели постоянного тока: что это такое и где они применяются?

Многие знают из школьного курса физики, что ток бывает переменным и постоянным. Если о применении переменного тока мы еще что-то можем с уверенностью сказать (все бытовые электроприемники питаются от переменного тока), то о постоянном мы не знаем практически ничего. Но раз существуют сети постоянного тока, значит есть и потребители, и соотвественно защита таким сетям тоже нужна. Где встречаются потребители постоянного тока и в чем отличие аппаратов защиты для этого рода тока мы рассмотрим в этой статье.

Ни один из типов электрического тока не «лучше», чем другой — каждый подходит для решения определенных задач: переменный ток идеален для генерации, передачи и распределения электроэнергии на большие расстояния, в то время как постоянный ток находит свое применение на специальных промышленных объектах, установках солнечной энергии, центрах обработки данных, электрических подстанциях и пр.

Шкаф распределения постоянного оперативного тока электрической подстанции

Понимание отличий переменного и постоянного тока дает четкое представление о задачах, с которыми сталкиваются автоматические выключатели постоянного тока. Переменный ток промышленной частоты (50 Гц) меняет свое направление в электрической цепи 50 раз в секунду и столько же раз «переходит» через нулевое значение. Этот «переход» значения тока через ноль способствует скорейшему гашению электрической дуги. В цепях постоянного тока значение напряжения постоянно — также как и направление тока постоянно во времени. Этот факт существенно затрудняет гашение дуги постоянного тока, и потому требует специальных конструкторских решений.

Совмещенные графики нормального и переходного режимов при отключении: а) переменного тока; б) постоянного тока.

Одно из таких решений — использование постоянного магнита (4). Движение дуги в магнитном поле является одним из способов гашения в аппаратах до 1 кВ и находит применение в модульных автоматических выключателях. На электрическую дугу, которая по своей сути является проводником, воздействует магнитное поле, и та затягивается в дугогасительную камеру, где окончательно затухает.

1 — подвижный контакт
2 — неподвижный контакт
3 — серебросодержащая контактная напайка
4 — магнит
5 — дугогасительная камера
6 — скоба

Полярность надо соблюдать

Еще одним и, пожалуй, ключевым отличием между автоматическими выключателями переменного и постоянного тока, является у последних наличие полярности.

Схемы подключения однополюсного и двухполюсного автоматического выключателя постоянного тока

Если вы защищаете однофазную сеть переменного тока при помощи двухполюсного автоматического выключателя (с двумя защищенными полюсами), то нет разницы в какой из полюсов подключать фазный или нулевой проводник. При подключении же в сеть постоянного тока автоматических выключателей необходимо соблюдать правильную полярность. При подключении однополюсного выключателя постоянного тока питающее напряжение подается на клемму «1», а при подключении двухполюсного — на клеммы «1» и «4».

Почему это так важно? Смотрите видео . Автор ролика проводит несколько тестов с 10-ти амперным выключателем:

1) Включение выключателя в сеть с соблюдением полярности — ничего не происходит.
2) Выключатель установлен в сеть обратной полярностью; параметры сети U=376 В, I=7,5 А. Как итог: сильное дымовыделение с последующим воспламенением выключателя.
3) Выключатель установлен с соблюдением полярности, а ток в цепи составляет 40 А, что в 4 раза превышает его номинал. Тепловая защита, как это и должно быть, разомкнула защищаемую цепь через несколько секунд.
4) Последний и самый жесткий тест проводился с таким же 4-х кратным превышением по току и обратной полярностью. Результат не заставил себя долго ждать — мгновенное воспламенение.

Читайте так же:
Сколько проводов нужно что бы подключить выключатель

Этот ролик наглядно демонстрирует то, почему необходимо соблюдать полярность при подключении автоматических выключателей постоянного тока. Подключение с обратной полярностью, и с током цепи, не превышающим номинал автоматического выключателя, выводит его из строя. Во избежание повторения подобных «печальных опытов» производители маркируют клеммы выключателей «+» и «-», а также дают схемы подключения в руководствах по эксплуатации.

Таким образом, автоматические выключатели постоянного тока — это устройства защиты, применяемые для объектов альтернативной энергетики, систем автоматизации и управления промышленных процессов и пр. Специальные исполнения защитных характеристик Z, L, K позволяют защищать высокотехнологичное оборудование промышленных предприятий.

Для их электроустановки всегда рекомендуется пользоваться услугами квалифицированных инженеров и техников, чтобы убедиться, что соответствующие автоматические выключатели постоянного тока будут выбраны и установлены правильно.

Быстродействующие выключатели постоянного тока

Быстродействующие выключатели (БВ) применяются для включения и отключения цепей постоянного тока под нагрузкой и автоматического отключения их при перегрузках и КЗ. Они являются одновременно коммутационными и защитными аппаратами.
В тяговых сетях постоянного тока напряжением 3 кВ при возникновении КЗ токи могут достигать 30 — 40 кА. Такие токи представляют большую опасность для сетей и оборудования термическими и динамическими воздействиями. В отличии от цепей переменного тока, где ток периодически снижается до нуля и дуга в отключающем аппарате в этот момент гаснет, в цепях постоянного тока происходит его нарастание до установившегося значения за сотые доли секунды. Отключение такого тока связано с большими трудностями. На практике отключение цепи постоянного тока осуществляют значительно раньше момента достижения током КЗ своего максимального значения. Для этого необходимы быстродействующие выключатели с максимальным током отключения от 15 до 27 кА. В зависимости от параметров отключаемой цепи такой отключающей способности БВ бывает вполне достаточно.
По принципу работы отключающего механизма быстродействующие выключатели делятся на две группы:
с пружинным отключением, отключение которых достигается за счет усилий, развиваемых мощными отключающими пружинами;
с магнито-пружинным отключением, отключение которых осуществляют как силы отключающих пружин, так и электромагнитные силы.
По способности реагировать на направление тока в цепи быстродействующие выключатели бывают:
поляризованные, автоматическое отключение которых происходит при определенном направлении тока через выключатель;
— неполяризованные, автоматическое отключение которых обуславливается только величиной тока и не зависит от его направления.
Отечественной промышленностью выпускались различные типы быстродействующих выключателей, нашедших широкое применение на тяговых подстанциях. Несмотря на то, что некоторые типы выключателей сняты с производства, в эксплуатации они продолжают находиться. Основные типы применяемых выключателей: АБ-2/4, ВАБ-28, ВАБ-43. На смену им идут выключатели типов ВАБ-49 и ВАБ-50 различных модификаций.
Выключатель АБ-2/4 (автоматический быстродействующий) на номинальный ток 2 кА и номинальное напряжение 4 кВ более 20 лет назад снят с производства, но до сих пор является довольно распространенным выключателем на электрифицированных участках постоянного тока.
Общий вид выключателя АБ-2/4 показан на рис. 1. Он крепится на четырех изоляторах 12, установленных на раме выкатной тележки 1. Магнитопровод 3 является основой электромагнитного механизма выключателя. Дугогасительная камера 4 лабиринтно-щелевого типа способна растягивать дугу до 4,5 м. Магнитное дутье в камере осуществляется сильно развитыми полюсами 7, прилегающими к камере снаружи с обеих сторон.

Рис. 1. Общий вид выключателя типа АБ-2/4

Полюса закреплены в магнитопроводе, на котором расположены с двух сторон камеры катушки магнитного дутья 8. Стенки камеры расходятся вверху, С внутренней стороны стенок камеры имеются клинообразные перемежающиеся перегородки 6, расходящиеся по радиусам. Эти перегородки образуют для электрической дуги лабиринт — зигзагообразную щель, в которой дуга растягивается. В верхней части камеры лабиринт прерван и установлены пламегасительные решетки 5 представляющие собой пакеты тонких стальных пластин, служащих для охлаждения и деионизации пламени и газов, сопровождающих дугу. Контактные выводы 9 к 11 служат для подключения БВ к шинам электрической цепи, в которую он включается. Индуктивный шунт 10 выполнен в виде пакета изолированных друг от друга стальных пластин, надетых на медную шину. Блок-контакты 2 через систему тяг и рычагов связаны с главными контактами, расположенными в нижней части дугогасительной камеры.
Электромагнитный механизм выключателя (рис. 2) крепится на литой чугунной раме 24, он имеет магнитопровод, образованный литыми брусьями 11 и 20 прямоугольного сечения, скрепленными стержнем круглого сечения 17, на который надета держащая катушка 18. На брусе 20 укреплен П-образный магнитопровод 22, набранный из изолированных друг от друга стальных пластин. На правом стержне П- образного магнитопровода размещена включающая катушка 21, на левом — размагничивающий виток главного тока 23 (катушка автоматического отключения) и дополнительная калибровочная катушка 27, которая имитирует главный виток при настройке выключателя. На верхнем брусе 11 между двумя щеками 12 закреплен на оси 30 якорь 28, набранный из изолированных стальных пластин. При повороте якоря между ним и брусом 11 остается постоянный воздушный зазор 5. На оси 3 между щеками 12 закреплен рычаг 4 подвижного контакта 2, оттягиваемый вправо отключающей пружиной 9. Этот рычаг с помощью гибкого проводника 31, выполненного из пакета медной фольги, соединен с размагничивающим витком 23. Параллельно витку 23 включен индуктивный шунт 26. Неподвижный контакт 1 соединен последовательно с катушкой магнитного дутья 32. К внешней цепи выключатель подключается контактными выводами 25 и 33.

Рис. 2. Устройство выключателя АБ-2/4 и эскизы магнитной системы БВ:
а — в начальный момент включения; б — во включенном состоянии; в —в начальный момент отключения
Держащая катушка 18 постоянно находится под током. На эскизе магнитной системы (рис. 2, а) показаны магнитные потоки держащей катушки Фдк, создаваемые током /да, и включающей катушки Фт, создаваемые током /вк в процессе включения выключателя. На эскизе показан начальный момент включения, когда якорь выключателя находится под действием усилия отключающей пружины Fnp в левом положении, но на него уже действует усилие, создаваемое включающей катушкой F . Магнитный поток Фвк намагничивает правый стержень П-образного сердечника и размагничивает левый, по которому проходит встречный поток Фдк Якорь 28 притягивается к правому стержню, преодолевая усилие пружины 9, выключатель переходит в предвключенное состояние, показанное на рис. 2 (штриховой линией показано положение подвижного контакта после включения). Пока по включающей катушке 21 протекает ток и существует магнитный поток, якорь 16 механизма свободного расцепления притягивается к скошенной части правого стержня, поворачиваясь вокруг оси 15. Якорь 16 соединен тягой 14 со стопорной скобой 6, которая упирается в ролик 5 хвостовика рычага 4 подвижного контакта 2, не давая возможности соединиться ему с неподвижным контактом 1. Только после отключения включающей катушки и исчезновения магнитного потока под действием сил пружины 9 якорь 16 "отлипает" от скошенной части стержня магнитопровода и занимает положение, показанное штриховыми линиями. Контакты 1 и 2 замыкаются, так как механизм свободного расцепления, состоящий из якоря 16, тяги 14 и стопорной скобы 6, этому не препятствует.
На рис. 2, б показан эскиз магнитной системы выключателя после отключения включающей катушки. Магнитный поток держащей катушки Фт перебрасывается вместе с якорем из левого стержня в правый, и якорь удерживается в притянутом состоянии после исчезновения потока Фвк.
Автоматическое отключение выключателя (рис. 2, в) происходит при достижении потоком Фр, создаваемым током /р размагничивающего витка главного тока, величины, необходимой для размагничивания правого стержня. Потоки Фдк и Фр в нем направлены встречно, результирующий поток Фдк — Фр снижается по мере нарастания тока /р. В то же время левый стержень намагничивается потоком Ф , притягивая к себе якорь. При некотором значении тока /р якорь перебрасывается влево. Это происходит при совместном действии сил магнитного притяжения и отключающей пружины, что характерно для выключателей с магнитно-пружинным отключением.
Калибровочная катушка 27,.действие потока которой аналогично действию потока Ф витка главного тока, применяется при регулировке уставки выключателя. Так как она имеет большое число витков, то для создания необходимого для отключения выключателя магнитного потока с помощью калибровочной катушки нужен сравнительно с витком главного тока небольшой ток. Уставку выключателя регулируют винтом 29, при опускании которого уменьшается зазор между левым стержнем и верхним брусом 11. Уменьшение воздушного зазора и, следовательно, магнитного сопротивления для потока Ф приводит к увеличению последнего при том же токе /р. Таким образом, необходимый для отключения выключателя магнитный поток можно получить при меньшем токе за счет уменьшения регулируемого зазора. Для увеличения тока уставки регулировочный винт необходимо перемещать вверх, вворачивая его в брус 11.
Индуктивный шунт 26 включен параллельно витку 23 главного тока, поэтому происходит распределение тока выключателя по двум параллельным ветвям: индуктивный шунт и виток главного тока. При нормальном режиме работы цепи индуктивность шунта не влияет на распределение токов по ветвям. Когда возникает КЗ в защищаемой цепи, резкое возрастание тока приводит к увеличению сопротивления индуктивного шунта за счет индуктивности, вследствие чего большая часть тока КЗ протекает через виток главного тока. Резкое возрастание тока в витке, благодаря влиянию шунта, ускоряет процесс отключения. При одной величине токов нормального режима и КЗ в индуктивный шунт ответвляются разные токи. При КЗ для отключения нужен меньший ток, чем при нормальном режиме, то есть индуктивный шунт автоматически снижает уставку выключателя при быстром нарастании тока в цепи.
Блок-контакты 19 выключателя приводятся в действие с помощью тяги 7, соединяющей ось 3 с рычагом 8, связанным с блок-кон- тактами изолирующей тягой 10. Пружина 13 обеспечивает необходимое нажатие в контактах и амортизацию при переключениях. Блок-контакты используются в схемах управления, сигнализации и автоматики.
Принципиальная схема управления выключателем АБ-2/4 приведена на рис. 3.
К схеме дистанционного управления выключателем АБ-2/4 предъявляются два основные требования: обеспечение необходимой длительности импульса тока во включающей катушке и исключение многократного включения на короткое замыкание.
Автоматический выключатель QF включается последовательно с разъединителями QSX (шинный) и QS2 (линейный) в линию, питающую тяговую сеть от шины 3,3 кВ. Включение выключателя QF осуществляется путем нажатия кнопки включения SBC в цепи 3-4. Катушка контактора КМ получает питание и своим контактом замыкает цепь 1-2, по которой через включающую катушку У А С протекает ток в несколько десятков ампер. Выключатель QF переходит в предвключенное состояние, показанное на рис. 2. Его блок-контакты QFX (цепь 3-4), QF2 (цепь 7-8) и QF3 (цепь 9-10) переключаются. Контакт QF3 размыкает цепь зеленой лампы HLG, а контакт QF2 замыкает цепь красной лампы HL R, сигнализирующей включение выключателя. Контакт QFX шунтирует катушку КМ, контактор отключается и размыкает цепь 1-2 катушки YA С. Последняя теряет питание и механизм свободного расцепления выключателя разрешает ему замкнуть цепь питающей линии 3,3 кВ. Катушка YA С рассчитана на кратковременное протекание по ней большого тока, поэтому сразу после включения QF она отключается, хотя кнопка SBC остается нажатой. Таким образом, обеспечивается необходимая длительность включающего импульса.

Читайте так же:
Неисправности при подключении двухклавишного выключателя

Рис. 3. Принципиальная схема управления выключателем АБ-2/4
Если при включении выключателя QF в питающей линии возникает ток КЗ, то QF автоматически отключается и не должен включаться повторно. В схеме предусмотрена блокировка выключателя от многократных повторных включений его при нажатой кнопке SBC с помощью реле блокировки KBS. После шунтировки катушки КМ блок-контактом QFX напряжение цепи полностью прикладывается к катушке реле KBS, которое сработав, дополнительно шунтирует катушку контактора КМ своим контактом KBS. При автоматическом отключении QF и размыкании QF < катушка контактора КМ при замкнутом контакте SBC не получит питание, так как реле KBS, оставаясь под током, продолжает шунтировать катушку КМ, запрещая повторное включение выключателя.
При необходимости включить выключатель второй раз необходимо опустить кнопку SBC, ее контакт разомкнет цепь 3-4, реле КВ& потеряет питание, разомкнет свой контакт. После этого при нажатии кнопки SBC начинается процесс следующего включения выключателя.
Оперативное отключение выключателя осуществляется нажатием кнопки цепи 5-6. Держащая катушка YAT обесточивается, магнитный поток Фдк (рис. 2) снижается до нуля, выключатель отключается под действием усилия отключающих пружин. Держащая катушка, намотанная тонким проводом большой длины, имеет значительную индуктивность. При отключении в ней наводится значительная э.д.с., которая может привести к пробою изоляции между витками. Во избежание этого параллельно катушке YA Т включается разрядный резистор 7. через который протекает ток под действием э.д.с. Диод VD запрещает протекание тока через резистор в рабочем режиме, не мешая протеканию через него разрядного тока при размыкании цепи держащей катушки. Резистор R2 используется для регулировки тока в цепи держащей катушки. Так как от этого тока зависит магнитный поток, удерживающий выключатель во включенном положении, а величина магнитного потока определяет ток уставки срабатывания выключателя, то ток держащей катушки должен быть тщательно отрегулирован и в процессе эксплуатации выключателя не должен изменяться. Чтобы сопротивление держащей катушки не менялось, она все время находится под током, даже при отключенном выключателе. Протекающий по катушке ток поддерживает ее температуру, а, следовательно, и сопротивление.

Читайте так же:
Ошиновка масляного выключателя это

Бездуговой сверхбыстродействующий выключатель постоянного тока AFB

AFB — бездуговой сверхбыстродействующий выключатель постоянного тока, воплотивший опыт и передовые технологии компании «Плутон». Выключатели AFB предназначены для применения в системах распределения электроэнергии на тяговых подстанциях трамвая, троллейбуса, легкорельсового транспорта, метрополитена.

Использование бездугового принципа отключения в выключателе постоянного тока предоставляет следующие неоспоримые преимущества по сравнению с выключателями с традиционной коммутацией и гашением дуги:

  • безопасность и экологичность. Отсутствие разрушительного действия дуги и загрязняющих продуктов горения;
  • AFB использует инновационный принцип отключения постоянного тока, за счет чего удается достичь высокой износостойкости. Это позволяет минимизировать расходы на комплектующие, не требуетсяобслуживание длительное время;
  • выключатель AFB разработан и изготовлен в соответствии с требованиями стандартов EN 501232/IEC619922, EN 50123‐3/IEC609473;
  • в отличие от традиционного контактного выключателя, которому при работе для выброса плазмы требуется дополнительное рабочее пространство, в выключателе AFB применяется принцип разрыва силовой цепи в вакууме. Благодаря этому достигается уменьшение рабочего объема выключателя AFB, рабочее пространство занимает в 2 раза меньше места по сравнению с традиционным выключателем, а также нет необходимости в соблюдении специальных требований по изоляционным расстояниям;
  • гарантированное отключение малых токов. Предотвращение разрушения контактов выключателя.

  • 50 000 срабатываний до обслуживания (включая отключения тока короткого замыкания);
  • короткое время размыкания контактов (1 ms). Высокоскоростное размыкание силовых контактов и возможность отключения выключателя до достижения тока КЗ по скорости нарастания тока;
  • ограничение тока короткого замыкания < 25 kA при пиковом расчетном значении 100 kA.

Преимущества бездугового выключателя AFB по сравнению с выключателями с традиционной коммутацией и гашением дуги:

  • возможность точной установки уставки срабатывания тока отключения;
  • отсутствие необходимости калибровки уставки срабатывания выключателя;
  • постоянное время отключения, не зависящее от величины тока короткого замыкания;
  • ресурс отключений аварийных токов намного больше, чем у выключателя с традиционной коммутацией и гашением дуги;
  • отсутствие дугогасительных контактов и, как следствие, необходимости периодической их замены;
  • отсутствие износа главных контактов;
  • отсутствие необходимости замены главных контактов вплоть до окончания механического ресурса вакуумной камеры;
  • отсутствие необходимости осмотра контактов после отключения аварийных токов при неограниченном количестве отключений;
  • отсутствие выброса плазмы при отключении;
  • отсутствие продуктов горения;
  • отсутствие отложений продуктов горения на элементах выключателя и на конструктивах распредустройств;
  • отсутствие избыточного давления плазмы в распредустройстве во время коммутации;
  • отсутствие вероятности перекрытия плазмы во время коммутации;
  • снижение опасности возникновения пожара;
  • возможность дистанционного изменения уставки.

Принцип действия
Перед включением выключателя система управления проводит ряд проверок, среди которых: контроль напряжения собственных нужд, контроль напряжений высоковольтных конденсаторов отключения и гашения, контроль исправности тиристоров гашения и шунтирующих диодов. Включение можно осуществлять с предварительной проверкой линии на короткое замыкание и без нее.

Включение. Батарея предварительно заряженных низковольтных конденсаторов обеспечивает включение выключателя посредством воздействия на включающую катушку с помощью тиристора включения.

Оперативное отключение. По команде отключения система управления выключателем воздействует на тиристор отключения. При открывании тиристора энергия, накопленная в высоковольтном конденсаторе отключения, коммутируется на отключающую катушку. Магнитное поле отключающей катушки воздействует на механизм отключения, который приводит в движение подвижный контакт вакуумной камеры, вследствие чего силовые контакты вакуумной камеры размыкаются.

В момент начала размыкания контактов между ними начинает загораться дуга, которая гасится энергией, запасенной в предварительно заряженном высоковольтном конденсаторе. Ток разряда конденсатора коммутируется в противофазе к основному току силовой цепи. В момент, когда алгебраическая сумма токов равна нулю — дуга гаснет, после чего контакты расходятся, отключая силовую цепь.

Аварийное отключение. Аварийное отключение происходит по такому же принципу, что и оперативное. В данном случае сигналом для отключения служат измерения, полученные от датчика тока, установленного в главной силовой цепи выключателя, обработанные по определенным алгоритмам микроконтроллером системы управления AFB.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector