Как устроены и работают солнечные батареи
Как устроены и работают солнечные батареи
В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями).
Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи – это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.
В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.
Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей), которые непосредственно преобразуют солнечную энергию в электрическую.
Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.
Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые – 15%.
Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность. Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.
Электродвижущая сила отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.
Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.
Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.
Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном – выходной ток.
Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.
Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а электродвижущая сила — последовательно включенных солнечных элементов. Так, комбинируя типы соединения, собирают батарею с требуемыми параметрами.
Солнечные элементы батареи шунтируются диодами. Обычно их 4 – по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает.
Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.
При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов они шунтируются и ток через них не идет.
Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы – химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.
Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.
Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.
При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.
Это процесс контролируется специальным контроллером. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.
При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.
Наиболее эффективно использование специальных аккумуляторов – гелевых (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей – 10 — 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!
Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.
Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства – инверторы.
Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.
Альтернативные источники энергии. Овощи и фрукты
Победитель конкурса
- Участник: Сытенко Мария Александровна
- Руководитель: Жеребцова Анна Ивановна
Цель данной работы — исследование электрических свойств овощей и фруктов.
I. Введение
Моя работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами.
Слово «энергия» прочно вошло в обиходный словарь начала XXI в. человечество в последнее время сталкивается с дефицитом энергоресурсов. Грядущее истощение запасов нефти и газа побуждает ученых искать новые возобновляемые источники энергии
Возобновляемые источники сырья и способы получения из них энергии – магистральная тема многих университетских исследований. Лаборатория в Нидерландах изучает возможность получения электричества из растений, точнее, из корневой системы растений и из бактерий, находящихся в почве. 1
Энергия солнца, энергия ветра, энергия приливов и отливов возобновляемым источникам энергии в последнее время всё чаще причисляют и растения. Ведь только зеленое растение является той единственной в мире лабораторией, которая усваивает солнечную энергию и сохраняет ее в виде потенциальной химической энергии органических соединений, образующихся в процессе фотосинтеза.
Один из альтернативных источников энергии – процесс фотосинтеза. Процесс фотосинтеза, протекающий в клетке растения, является одним из главных процессов. В ходе него происходит не только разделение молекул воды на кислород и водород, но и сам водород в какой-то момент оказывается разделенным на составные части — отрицательно заряженные электроны и положительно заряженные ядра. Так что, если в этот момент ученым удастся «растащить» положительно и отрицательно заряженные частицы в разные стороны, то, по идее, можно получить замечательный живой генератор, топливом для которого служили бы вода и солнечный свет, а кроме энергии, он бы еще производил и чистый кислород. Возможно, в будущем такой генератор и будет создан. Но для осуществления этой мечты нужно отобрать наиболее подходящие растения, а может быть, даже научиться изготавливать хлорофилловые зерна искусственно, создать какие-то мембраны, которые бы позволили разделять заряды.
Данные исследований лаборатории молекулярной биологии и биофизической химии МФТУ по созданию таких мембран показали, что живая клетка, запасая электрическую энергию в митохондриях, использует ее для произведения очень многих работ: строительства новых молекул, затягивания внутрь клетки питательных веществ, регулирования собственной температуры.. С помощью электричества производит многие операции и само растение: дышит, движется (как это делают листочки всем известной мимозы-недотроги), растет.
Цель моей работы – исследование электрических свойств овощей и фруктов.
Задачи:
- Экспериментально измерить и проанализировать силу тока и напряжение таких батарей.
- Провести исследования с гальванических элементов, изменяя ширину пластин, глубину их погружений, и расстояний между электродами.
- Испытайте разные комбинации последовательно соединённых продуктов и проанализируйте полученные результаты.
- Собрать цепь, состоящую из нескольких таких батареек и постараться зажечь лампочку, запустить часы.
- Изготовить прибор гальванометр для определения напряжения.
- Исследовать электропроводность овощей и фруктов, разных сроков хранения, используя свой прибор.
Объект исследования: фрукты и овощи.
Предмет исследования: свойства овощных и фруктовых источников тока.
Гипотеза: Так как фрукты и овощи состоят из различных минеральных веществ (электролитов), то они могут стать природными источниками тока.
Методы исследования: изучение и анализ литературы, проведение эксперимента, анализ полученных данных.
II. Основная часть
2.1 История создания батарейки
Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым ЛуиджиГальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки.
Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное 2 истолкование. Опыты Гальвани стали основой исследований другого итальянского ученого — Алессандро Вольта. Он сформулировал главную идею изобретения. Причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Для подтверждения своей теории Вольта создал нехитрое устройство. Оно состояло из цинковой и медной пластин погруженных в емкость с соляным раствором. В результате цинковая пластина (катод) начинала растворяться, а на медной стали (аноде) появлялись пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток. Несколько позже ученый собрал целую батарею из последовательно соединенных элементов, благодаря чему удалось существенно увеличить выходное напряжение. Именно это устройство стало первым в мире элементом питания и прародителем современных батарей. А батарейки в честь Луиджи Гальвани называют теперь гальваническими элементами 3 .
2.2 Создание фруктовой батарейки
а) с использованием одного элемента
Для создания фруктовой батареи мы попробовали взять лимоны, яблоки, огурцы свежие и соленые, помидоры, картофель сырой и вареный. Положительным полюсом определили несколько блестящих медных пластин. Для создания отрицательного полюса решили использовать оцинкованные пластины. Конечно же, понадобились провода, с зажимами на концах. Ножом сделала в фруктах небольшие надрезы, куда вставила пластины (электроды). После соединения всех частей воедино у меня получилась фруктовая или овощная батарейка (рис. 1).
Воздействие электрического тока на человека
Когда человек вступает в контакт с источником напряжения, происходит поражение электрическим током. Касаясь проводника, находящегося под напряжением, человек становится частью электросети, по которому протекает электрический ток.
Как известно, человеческий организм состоит из множества жидкостей и минералов, что является хорошим проводником электричества. Это говорит о том, что действие электрического тока на организм человека оказывает летальный исход.
Виды воздействия электрического тока
Существует много факторов, влияющих на результат действия электрического тока на организм человека:
- пути протекания — самую большую опасность представляет ток, протекающий через головной и спинной мозг;
- продолжительность воздействия — чем больше время действия тока на человека, тем тяжелее последствия;
- от величины и рода протекания — переменный ток является наиболее опасным, чем постоянный;
- от физического и психологического состояния человека — человек обладает неким сопротивлением, это сопротивление варьируется в зависимости от состояния человека.
Электрический ток проходя через организм человека может оказывать на него 3 вида воздействий:
- термическое — подразумевает появление ожогов, а так же перегревание кровеносных сосудов;
- электролическое — проявляется в расщеплении крови, вызывает существенные изменения физико-химического состава;
- биологическое — нарушение нормальной работы мышечной системы, вызывает судорожные сокращения мышц.
Существует множество повреждений, которые возникают в результате действия электрического тока: металлизация кожи, электрические знаки, электроофтальмия, механические повреждения. Наиболее опасным являются электрические удары. Электрический удар сопровождается возбуждением живых тканей организма током, который через него проходит.
В зависимости от того, какие последствия возникают после электрического удара, их разделяют на 4 степени воздействия:
I — судорожные сокращения мышц, человек в сознании;
II — судорожные сокращения мышц, человек без сознания, дыхание и работа сердца присутствуют;
III – отсутствие дыхания с нарушением работы сердца;
IV – клиническая смерть, отсутствие дыхания, остановка сердца.
Соблюдайте правила безопасности и берегите себя! Для защиты работы с электрическим током Вы можете посмотреть в нашем каталоге.
Другие статьи
Электрощит для квартиры и частного дома: основные отличия
Электрический щит – это в первую очередь защита жизни и здоровья человека от поражения электрическом током, а во вторую защита имущества в виде не только электроприборов, но и дома, жилья в целом.
Купить розетки и выключатели в квартиру. Какие выбрать?
Электроустановочные изделия уже давно стали элементом интерьера.
Уличные светильники: организация освещения в частном доме и на придомовой территории.
Правильно организованная подсветка загородного дома уличными светильниками должна быть не только функциональной, но и отвечать всем нормам безопасности.
Разводка электрики в деревянном доме
При монтаже проводки в деревянном доме своими руками очень важно соблюсти все меры безопасности и позаботиться о качественных элементах электрооборудования.
Освещение в детской
Организация систем освещения – важнейший этап обустройства любого помещения, в особенности детской комнаты. Здесь ребенок проводит большую часть свободного времени, делает уроки и отдыхает. Сохранить здоровье его глаз помогут правильно подобранные осветительные приборы.
Безопасность системы освещения
Главным источником естественного света в комнате ребенка должно быть окно. В темное время суток с этой целью можно использовать самые разнообразные светильники. При организации системы освещения в детской, нужно проследить за тем, чтобы она отвечала следующим стандартам:
· была максимально безопасной,
· была удобной в использовании,
· состояла из разных типов освещения,
· могла менять конфигурацию и подстраиваться под потребности ребенка.
Безопасный прибор должен быть изготовлен из высокопрочного и небьющегося материала без выступающих и острых углов. Нежелательно использовать переносные светильники и приборы, в комплектацию которых включены длинные шнуры. Также не стоит выбирать устройства с пластиковыми плафонами, которые в процессе нагревания выделяют вредные вещества.
Освещение в детской должно обеспечивать надежную защиту от поражения электрическим током и механических травм.
Качество освещения в детской
Свет в комнате ребенка не должен быть мерцающим, слишком ярким или, наоборот, тусклым. Яркость освещения в детской влияет и на физическое, и на психоэмоциональное состояние ребенка. Важным фактором является спектральной состав источника света, например:
• энергосберегающие лампы испускают свет в виде микропульсации, из-за чего глаза ребенка перенапрягаются, а он быстро утомляется;
• галогенные светильники излучают мягкий свет, но сильно нагреваются, что также небезопасно для ребенка.
При выборе освещения для ребенка внимание следует обращать не только на спектр света, но и на показатель пульсации.
У пульсации, чем выше показатель в герцах, тем меньше она вредна. Частота мерцания ламп накаливания и люминесцентных ламп с электромагнитными дросселями в пределах 100 Гц, а у ламп с электронным драйвером 300 Гц и выше. При питании источников света током частотой 300 Гц и выше глубина пульсации не имеет значения, так как на эту частоту не реагирует мозг человека. Наличие существенных пульсаций можно проверить, направив на светильник камеру смартфона, при появлении на экране полос – пульсации есть, и они существенны. В конструкции светодиодной лампы имеется драйвер, который преобразует переменный ток из розетки в постоянный. Поэтому от качества этого драйвера и будет зависеть пульсация.
Также при выборе лампы следует обращать внимание на мощность светодиода. Светодиод большой мощности может быть вреден для зрения. Поэтому лучше выбирать лампу с несколькими светодиодами, но маленькой мощности отдельно каждого диода.
В детской комнате лучше не использовать мебель с глянцевой поверхностью. Она дает блики и отражает свет, который может ослеплять.
Равномерное освещение в детской
Проектируя освещение в детской комнате, нужно помнить, что оно должно равномерно распределять световую энергию по всему помещению. Он может состоять из потолочных люстр с плафонами, направленными вверх, настенных бра, торшеров и настольных ламп. Немаловажную роль играет и фоновое освещение, которое создают накладные полупрозрачные светильники и споты, позволяющие направлять луч света в разные стороны.
Что касается дизайна, то в настоящее время существует огромное количество светильников, которые способны легко вписаться в интерьер любой детской комнаты. Чтобы убедиться в этом, вам достаточно изучить каталог интернет-магазина «Ситилюкс».
Как выбрать светодиодное LED освещение
Чтобы подобрать идеальное освещение для каждой комнаты в доме, нужно опираться на личные предпочтения и потребности в уровне яркости. В представленном на рынке разнообразии определиться довольно сложно. Но современное решение – светодиодное освещение. Можно выбрать цветовую температуру, мощность, силу светового потока исходя из потребностей. При правильном подходе к подбору осветительной техники удастся сэкономить, органично вписать в интерьер любой тип прибора.
Преимущества светодиодных ламп
У светодиодных ламп есть ряд преимуществ, которые делают их выгоднее ламп накаливания:
- Возможность регулировки яркости, цветовой температуры.
- Продолжительность эксплуатации. Лампа не может перегореть.
- Безопасность. Светильники не вредят человеческому здоровью и экологии.
- Большой диапазон рабочих напряжений. При минимальной подаче тока светильник будет менее ярким, но продолжит работать.
- Минимальные потери электроэнергии.
- Светодиод не издает шум.
- LED-лампы не привлекают насекомых, так как не являются источниками УФ-излучения.
- Не требуют специальных условий утилизации.
- Не вызывают зрительную усталость, так как не мерцают.
Такой перечень преимуществ позволяет использовать LED-лампы для любых типов помещений. Они качественно осветят жилую территорию и офис, будут работать даже на улице.
Светодиодное освещение можно подобрать по яркости, контрастности, потреблению энергии и цветовому эквалайзеру. Светодиоды могут работать при низких температурах, повышенной влажности, поэтому удастся подобрать вариант даже для улицы.
Светодиоды не перегорают. Работают от 30 тысяч часов и дольше. Такой долговечности позавидуют лампы накаливания и люминесцентные светильники. С учетом минимального расхода энергии светодиодное освещение – практичное и выгодное решение.
По каким критериям лучше выбирать лампу?
Выбирать светодиодную лампу нужно по бюджету, техническим характеристикам и личным предпочтениям. Основной параметр – мощность. Чем выше мощность лампы, тем ярче свет будет в помещении. Но с увеличением данного значения растет и потребление электроэнергии.
- Считается, что в среднем LED-лампа потребляет в 10 раз меньше энергии, нежели лампа накаливания. Но при сравнении качества освещения можно заметить, что эта формула не работает. У светодиодной лампы снижается яркость за счет цвета колбы.
- Некоторые лампы подходят для «умного дома» – их яркостью можно управлять через приложение на смартфоне. Стоимость такого решения будет выше, чем у стандартной LED лампы.
- При покупке обратите внимание на максимальную продолжительность работы. Этот параметр указывается на упаковке с товаром. Стандартное для таких светильников значение – 30 тысяч часов.
- Разные типы светодиодов отличаются по цветовой температуре. Бывает теплый, нейтральный и холодный белый свет.
- При подборе лампы для влажного помещения или улицы обратите внимание на степень пыле- и влагозащиты. Осмотрите упаковку. На ней производитель указывает специальный индекс (IP**). Первая цифра на лампе показывает уровень защищенности от пыли, а вторая – от влаги. Для ванной покупайте товары со степенью влагозащиты не ниже 4.
- Важный параметр для светодиодной лампы – индекс цветопередачи. Характеристика влияет на стоимость диодного светильника. Чем выше индекс цветопередачи лампы, тем она дороже. Этот параметр отображает качество передачи цвета, которое напрямую связано с уровнем освещения.
- Осветить комнаты в доме можно лампой с индексом 80 и выше.
- По форме и размеру лампочка должна подходить для монтажа в люстру. Для больших плафонов выбирают стандартные лампы в форме груши. Их размер и мощность связаны между собой, так же как и с размером люстры. В продаже имеются решения для организации точечного электроосвещения – миниатюрные лампы. Тут важно обратить внимание на тип цоколя, чтобы была совместимость с плафоном люстры.
Мощность и световой поток светодиода
Лампы для промышленных и бытовых помещений изготавливаются в разных диапазонах мощности. Бытовые бывают до 15 Вт, а промышленные – до 100 Вт. Чем выше параметр мощности, тем ярче свет излучает LED-лампа, и больше электроэнергии потребляется за единицу времени.
Оценивать светодиод можно по световому потоку. Этот показатель нужен для сравнения LED лампочек с лампами накаливания. Основная единица измерения – Люмены (Лм).
При мощности 2-3 Вт светодиодная лампа выделяет световой поток 250 Лм. Аналогичный показатель будет у лампы накаливания мощностью не менее 20 Вт. Световой поток лампы увеличивается пропорционально к росту мощности.
Мощность не влияет на цветовую температуру. Эти параметры не связаны и могут подбираться отдельно. Температура должна соответствовать типу помещения. Для дома подойдут теплые и нейтральные белые оттенки. Холодный светодиодный свет будет уместен в ванной комнате.
Цветовая температура лампы
Цветовая температура лампы измеряется в Кельвинах (К) и указывается на упаковке с товаром.
Выделяют 3 ее типа:
- теплый белый
- нейтральный
- холодный свет.
Цветовая температура теплого белого света не превышает 3000 К. Для второго типа цветовой температуры характерен диапазон от 4000 до 4500 К. У холодного этот показатель составляет 6500 К.
Для зоны отдыха в доме лучше выбрать теплый свет. Так помещение будет казаться уютнее. Прохладный белый – преимущественно офисный вариант. Подходит для организации рабочих мест. Лампы прохладного света могут негативно влиять на зрение, если цветовая температура будет выше 6500 К.
Форма лампы, цоколь
Подбирайте цоколь светодиодной лампы исходя из типа патрона в люстре. Форма может быть аналогична цоколю лампы накаливания. Есть разновидности светодиодов для мебели, у них основание типа GX53.
В продаже можно найти такие разновидности светодиодов для цоколей по форме:
- Груши. В высоту они не более 12,5 см. Подходят для домашнего применения как замена лампе накаливания в классической люстре.
- Шара. Маленькие по размеру, подходят для небольших люстр.
- Свечеобразные. Устанавливаются в узкие плафоны люстр.
- Точечные лампочки.
- Кукурузы: продолговатые, довольно большие.
Виды светодиодного оборудования
Светодиодное оборудование востребовано во многих областях из-за своей экономности, практичности и безопасности. Лампа на светодиодах осветит большую площадь, подойдет для создания декоративных решений. Существует несколько основных разновидностей светодиодного оборудования.
Светодиодные панели
Светодиодная панель – оборудование, предназначенное для создания искусственного освещения в жилых зданиях и офисах. Их использование позволяет органично вписать источник света в дизайн интерьера.
Светодиодные панели обладают такими преимуществами:
- Невысокая цена.
- Долговечность.
- Надежность.
- Безопасность.
- Легко вписываются в интерьер.
- Качественно освещают комнату.
Приобретать панель со светодиодами целесообразно для интерьеров, в которых мало естественного света. Такое оборудование компенсирует этот недостаток. Использование электроэнергии будет минимальным, уровень освещенности по сравнению с другими видами ламп – существенно выше. Панели лучше рассеивают свет, значительно ярче, чем отдельно стоящие лампы.
Светодиодная лента
Светодиодная лента – универсальное решение. Оно подходит для декорирования зданий и их фасадов, вывесок, рекламных баннеров.
Преимущества светодиодной ленты:
- Долговечность.
- Минимальный расход и потеря энергии.
- Экологическая безопасность.
- Простота монтажа.
- Может использоваться как основное или вспомогательное освещение.
Светодиодную ленту стоит использовать для декора. Как дополнительный источник света она создаст особый уют, подчеркнет дизайнерские решения. На кухне ленту крепят к мебели над рабочей поверхностью для улучшения качества электроосвещения. Если в шкафчиках нет встроенных диодов, это – самый простой и доступный способ прибавить яркости.
Лента крепится на клей для монтажа. Нужно снять защитный слой с липкой части и установить диоды на выбранную поверхность. Не нужны специальные крепления, инструменты, знания и умения.
Светодиодные прожекторы
Для реализации уличного освещения подойдут светодиодные прожекторы. В сочетании с длительным сроком службы и экономичностью технологии такое решение идеально подойдет для подсветки фасадов зданий.
Плюсы светодиодных прожекторов:
- Создают мощный световой поток.
- Более чем в 2 раза экономнее, чем галогенные лампы.
- Работают 30 тысяч часов и дольше.
- Не нуждаются в обслуживании.
- Экологически безопасны.
- Не уязвимы перед скачками напряжения.
- Не боятся изменения температуры окружающей среды, высокой влажности.
Светодиодные прожекторы устанавливают на улице как отдельный источник света или как вспомогательный элемент для подсветки экстерьера зданий. Выпускаются модели, которые работают от аккумулятора и не нуждаются в монтаже проводки. Такие варианты используют для освещения частной территории у дома. Совместное применение с датчиком движения позволит расходовать энергию еще более экономно.
Точечные светодиодные лампочки
Чтобы свет в комнате был равномерным, по периметру потолка устанавливают точечные светодиодные лампочки. Светильники подбираются по мощности, яркости и типу управления.
Обладают такими достоинствами:
- Позволяют реализовать фрагментарное освещение: можно осветить только те зоны, которые нуждаются в дополнительной подсветке.
- Световой поток мощный, целостный и направленный.
- Равномерность.
- Экономичность.
- Минимальное воздействие на интерьер, его общую концепцию.
- Наличие в продаже лампочек разного цвета.
Точечные лампочки располагаются таким образом, чтобы избежать зон с тенью. При монтаже учитываются области, которые нуждаются в особенно ярком электроосвещении. На них устанавливаются дополнительные точки подсветки.
Благодаря минимальному нагреву в процессе работы точеные лампочки монтируются в гипсовые конструкции на потолке. Их можно устанавливать в натяжное основание – это безопасно и выглядит аккуратно.