Aviatreid.ru

Прокат металла "Авиатрейд"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ПИТАНИЕ ЛАМПЫ ДНЕВНОГО СВЕТА ПОСТОЯННЫМ ТОКОМ

ПИТАНИЕ ЛАМПЫ ДНЕВНОГО СВЕТА ПОСТОЯННЫМ ТОКОМ

Проблема питания ламп дневного света по-прежнему привлекает внимание читателей нашего журнала. И такой интерес неудивителен, так как лампы дневного света отличаются экономичностью, многообразием цветовых оттенков излучаемого светового потока, длительным сроком службы.

Вопросы эксплуатационной надежности ламп дневного света (ЛДС), их “реанимации” неоднократно освещались на страницах журнала “Радио” [1-3]. Для повышения надежности ЛДС в [1, 5] их рекомендуют питать выпрямленным током сети с использованием бесстартерного устройства запуска. Нити накала лампы по прямому назначению не используют, каждая из них шунтирована перемычкой и выполняет функцию электрода, на который подают напряжение, необходимое для включения лампы. По сути, предлагается мгновенное “холодное зажигание” резким повышением напряжения на ЛДС при пуске без предварительного подогрева ее электродов.
Однако отметим, что зажигание с холодными электродами серийных ЛДС, предназначенных для работы с подогревом нитями накала, является для электродов более тяжелым режимом, чем включение обычным образом [4]. Лампы быстро изнашиваются, и в этом случае, естественно, говорить о наработке среднего гарантированного заводом-изготовителем срока службы ЛДС не представляется возможным.

Другая особенность при работе ЛДС на постоянном токе – возникновение явления катафореза [6] из-за перемещения ионов ртути в лампе к катоду. В результате происходит затемнение лампы со стороны анода, что снижает ее световой поток. Уменьшить влияние такого явления можно, если периодически (один-два раза в месяц), согласно рекомендации в [б], менять полярность подключения ЛДС, а это усложняет эксплуатацию светильников.

К сказанному следует добавить, что зажигание ЛДС с холодными электродами требует повышения напряжения до 400…750 В. Такое напряжение, несмотря на его кратковременность, небезопасно в эксплуатации, особенно в быту.

Поэтому приведенные в [1, 5] советы больше подойдут для ЛДС, которые не могут работать от сети переменного тока, что бывает при обрыве или разрушении нитей накала, потере эмиссии одним из электродов лампы.

Для улучшения общего или местного освещения в [1] предлагается обычный светильник с лампой накаливания дополнить светильником с ЛДС, включенным на питание постоянным током, причем лампа накаливания выполняет функцию балластного резистора. Так, для ламп накаливания мощностью 75 или 100 Вт необходимо установить светильник с ЛДС мощностью 20 Вт, а для 200 или 250 Вт – 80-ваттную ЛДС.

Однако использование лампы накаливания вместо дросселя значительно снижает экономичность такого комбинированного светильника. Лампа накаливания мощностью 100 Вт и напряжением 220…235 В создает световой поток 1000 лм. При работе такой лампы, выполняющей функцию балластного резистора, совместно с ЛДС мощностью 20 Вт напряжение на ней – около 180 В (по результатам измерения), что составляет 80 % от номинального. Мощность, потребляемая лампой накаливания в этом случае, составляет 70 % от номинальной (примерно 70 Вт), а световой поток – всего 45 % (450 лм). При световом потоке ЛДС в 1200 лм общий световой поток комбинированного светильника составит 1650 лм, а потребляемая мощность – 90 Вт. В то же время ЛДС мощностью 30 Вт создает световой поток в 2100 лм, на 27 % больше при меньшей в три раза потребляемой мощности. Очевидно, что намного экономичнее вместо комбинированного светильника использовать обычный с ЛДС мощностью 30 Вт, исключив дополнительные затраты на монтажные работы по соединению светильников между собой.

Проведенный подобным образом анализ работы комбинированного светильника с лампой накаливания 200 Вт и ЛДС мощностью 80 Вт, рабочее напряжение которой 102 В, в отличие от ЛДС – 20 Вт, показывает, что световой поток лампы накаливания составляет всего лишь 5,4 % (280 лм) от светового потока ЛДС (5220 лм), а общая потребляемая мощность – 160 Вт (80 Вт лампа накаливания и 80 Вт ЛДС). По создаваемому световому потоку лампа “двухсотка” в комбинированном светильнике будет эквивалентна лампе накаливания “сороковке” (300 лм). По сути, в таком светильнике лампа накаливания только “греет”, потребляя мощность 80 Вт, но не светит (5,4 %), и, естественно, необходимость в таком светильнике отсутствует.

Повысить световой поток комбинированного светильника с ЛДС мощностью 30, 40, 65, 80 Вт можно, если использовать лампы накаливания на напряжение 127 В. Однако в этом случае, при пробое диодов моста, от которого питается ЛДС, лампа накаливания оказывается под напряжением сети 220 В, и ее нить перегорает [1]. Чтобы исключить выход из строя лампы накаливания, ее необходимо включить в цепь постоянного тока последовательно с ЛДС (см. схему). Подобный способ изложен в [б]. При включении выключателя SA1 устройство работает как удвоитель напряжения, выходное напряжение которого приложено к промежутку катод-анод лампы EL2. После зажигания лампы устройство переходит в режим двуполупе-риодного выпрямления с активной нагрузкой. Выпрямленное напряжение примерно одинаково распределено между лампами EL1 и EL2, что справедливо для ЛДС мощностью 30, 40, 65, 80 Вт, имеющих рабочее напряжение в среднем около 100 В.

Читайте так же:
Схема подключения одного выключателя с несколькими лампами

Для ЛДС мощностью 80 Вт целесообразно использовать две лампы накаливания на 127 В по 60 Вт каждая, включив их параллельно. При таком включении световой поток ламп накаливания будет составлять примерно 24 % от потока ЛДС.

Для ЛДС мощностью 65 Вт наиболее подходящая лампа накаливания на 100 Вт, 127 В. Световой поток этой лампы в комбинированном светильнике примерно 20 % от потока ЛДС. Соответственно для ЛДС мощностью 40 Вт необходима лампа накаливания на 60 Вт, 127 В. Ее световой поток составит 20 % от потока ЛДС. И наконец, для ЛДС мощностью 30 Вт можно применить две лампы накаливания на 127 В по 25 Вт каждая, включив их параллельно. Световой поток этих двух ламп накаливания – около 17 % светового потока ЛДС. Такое увеличение светового потока лампы накаливания в комбинированном светильнике объясняется тем, что они работают при напряжении, близком к номинальному, когда их световой поток приближается к 100 %. В то же время, при напряжении на лампе накаливания около 50 % от номинального, их световой поток составляет всего лишь 6,5 %, а потребляемая мощность – 34 % от номинальной [7].

Для питания ЛДС мощностью 30, 40, 65 Вт лучше всего использовать диодную сборку КЦ404А, которая имеет держатель предохранителя. ЛДС мощностью 80 Вт (рабочий ток 0,86 А) потребует более мощных диодов, например, КД202Р, КД203Г, Д248Б.

Файл: 8.jpg

Энергосберегающие лампы: обратная сторона медали

Существуют два вида энергосберегающих ламп: светодиодные и люминесцентные. Первые представляют собой твердотельные элементы — полупроводниковые светоизлучающие диоды со специально подобранным спектром излучения, обладающие повышенной мощностью излучения. Последнее достигается как повышенной мощностью единичных элементов, так и объединением отдельных элементов в большие группы, состоящие из нескольких десятков и даже сотен элементов.

На этом принципе уже работают не только бытовые лампочки, но и уличные фонари, светофоры. Многочисленные западные и китайские компании наперебой предлагают такие фонари различной мощности. Вторые — это газоразрядные люминесцентные лампы, подобные по принципу действия обычным трубчатым люминесцентным лампам, которые хорошо всем знакомы.

Отличие энергосберегающих ламп состоит в том, что, во-первых, в них используется стеклянная трубка значительно меньшего диаметра, изогнутая в виде компактной спирали, которая заканчивается обычным по форме цоколем, что позволяет «ввертывать» эту лампу в самый обычный патрон обычной лампочки накаливания. Во-вторых, вместо громоздкого дросселя (балласта, ограничивающего ток газового разряда) имеющегося у обычной трубчатой лампы, работающей на частоте 50 Гц, используется компактный электронный балласт, работающий на высокой частоте, производимой специальным полупроводниковым генератором. Внутренние электронные цепи обоих типов этих ламп нуждаются в питании постоянным током, получаемым с помощью встроенного в цоколь выпрямителя (диодного мостика со сглаживающим конденсатором).

Такой же выпрямитель с конденсатором имеется на входе любого импульсного источника питания, которыми снабжены все современные электронные приборы компьютеры. Оказывается, что два этих хорошо известных элемента создают существенные проблемы при их массовом применении во многих тысячах устройств. Чем же они так плохи? А вот чем. Оказывается, что конденсатор потребляет из сети ток импульсами, только в те моменты времени, когда мгновенное значение синусоидально изменяющегося входного напряжение становится больше остаточного напряжения на конденсаторе (из-за его разряда на нагрузку).

В остальное время, когда напряжение на конденсаторе больше мгновенного входного, диоды моста оказываются запертыми обратным напряжением конденсатора и потребление тока отсутствует. В результате, ток, потребляемый таким выпрямителем, оказывается существенно сдвинутым по фазе относительно напряжения.

При большом количестве таких выпрямителей, подключенных к сети переменного тока, возникает проблема не только загрязнения сети гармониками тока, но и проблема снижения коэффициента мощности (косинуса фи). Типичное значение коэффициента мощности источника питания без корректировки 0,65. В технической литературе появились даже публикации, в которых утверждается, что поскольку энергосберегающие лампы являются мощным источником гармоник тока, то поэтому «просто механическая замена ламп накаливания на энергосберегающие без дополнительных мероприятий по борьбе с генерацией гармоник с высокой степенью вероятности не даст ожидаемого эффекта».

Но, неужели инженерами до сих пор не найдено решения этой проблемы? Найдено, и уже давно! Для снижения гармоник тока и повышения коэффициента мощности применяется его активная коррекция с помощью так называемого корректора коэффициента мощности (ККМ или PFC — power phase corrector). ККМ представляет собой самостоятельный преобразователь напряжения, так называемый «бустерный конвертер» (boost converter — ВС), снабженный специальной схемой управления. Основными элементами ВС являются; дроссель L, диод VD2, конденсатор С2 и быстродействующий ключевой элемент VT на базе MOSFET транзистора. Работа этого устройства основана на явлении возникновения импульсов повышенного напряжения обратной полярности на индуктивности, при разрыве тока в ее цепи.

Читайте так же:
Светодиодные лампы для розеток

Транзистор VT с большой частотой (обычно, 200 кГц) включает и выключает ток в цепи индуктивности L, а образующиеся при этом импульсы повышенного напряжения через диод VD2 заряжают конденсатор С2, от которого питается нагрузка (в нашем случае электронный балласт). Таким образом, напряжение на конденсаторе С2 всегда выше входного напряжения ВС.

Во многих случаях конденсатор С2 заряжается до напряжения 385-400 В. Благодаря тому, что конденсатор С1 имеет очень небольшую емкость (это, по сути, высокочастотный фильтр), а схема управления с широтно-импульсной модуляцией (ШИМ или PWM) ключевого элемента постоянно отслеживает фазу входного переменного напряжения и обеспечивает соответствующую привязку импульсов управления (то есть импульсов тока) к фазе напряжения, удается практически полностью устранить сдвиг фаз между током и напряжением, потребляемым накопительным конденсатором С2, рис. 1б, то есть устранить гармоники тока и поднять коэффициент мощности до 0,95-0,98.

С чисто технической точки зрения, никакой проблемы нет. Настоящая проблема совершенно в другом. А именно в том, что с целью повышения конкурентоспособности производители стремятся любой ценой снизить стоимость лампы и поэтому часто не используют ККМ, что действительно порождает проблему «загрязнения» напряжения в сети гармониками тока, которые будут ощущать все другие электрические приборы, включенные в эту сеть.

Более того, те же самые мотивы побуждают производителей (не будем забывать, что это китайские фабрики) использовать в электронном балласте самые дешевые электронные компоненты, не имеющие достаточного запаса по напряжению. В результате, при воздействии на электронный балласт первого же импульса перенапряжения, которые всегда имеются в сети, электронные компоненты такого балласта будут повреждены и нашу лампу придется выбросить.

Журнал «Электротехнический рынок» № 1-2 (31-32)/2010

Мы на выгодных условиях сотрудничаем с архитекторами и дизайнерами, сетевыми магазинами, строительными и девелоперскими компаниями, проектными организациями и дилерами. Свяжитесь с нами, и мы обсудим детали сотрудничества на особых условиях

Спасибо, мы получили Ваше
обращение и перезвоним в
ближайшее время!

В рабочий день среднее время
ожидания не превышает 15 минут

Отправка заявки завершилась неудачей, пожалуйста, повторите попытку позднее

Принцип работы источников питания

Почти полуторавековая «эра» применения ламп накаливания в настоящее время подходит к концу. На смену им на короткое время сначала пришли энергосберегающие люминесцентные лампы, а в последнее время все более прочные позиции занимают светодиодные светильники.

К сожалению, принципы питания электрических ламп накаливания настолько укоренились в массовом сознании, что механически переносятся и на светодиодные светильники. Однако, если лампу накаливания достаточно подключить к соответствующему напряжению, неважно, переменного или постоянного тока, чтобы она светила, то светодиодам требуются источники питания с особыми характеристиками, которые мы сейчас и рассмотрим.

Светодиод представляет собой полупроводниковый кристалл, состоящий из двух зон, одна из которых содержит свободные электроны, а другая — «дырки». Свечение возникает при рекомбинации электронов и «дырок» в области перехода между этими двумя зонами. Яркость свечения в первом приближении пропорциональна силе протекающего через него тока.

А как же быть с напряжением? Ведь лампы накаливания способны светить при самых разных величинах питающего напряжения — от долей вольта до нескольких тысяч вольт, лишь бы сопротивление спирали соответствовало нужному значению в соответствии с законом Ома. Оказывается, никак! P-N-переход — структура, обладающая фиксированным порогом, при котором возникает излучение света и зависящем только от материала кристалла и технологии его изготовления. Для светодиодов разного цвета он составляет от 1,6 В (инфракрасные и красные) до 4,4 В (ультрафиолетовые) — Рис. 1. Зависимость падения напряжения на P-N-переходе светодиодов разного цвета от силы протекающего через них тока

Схема 1

Наиболее часто применяемые для освещения белые светодиоды (на самом деле они либо синие, либо ультрафиолетовые, покрытые люминофором, переизлучающим свет в видимом диапазоне), имеют падение на P-N-переходе порядка 3…3,3 В. Таким образом, светодиоды, в принципе, являются низковольными источниками света, к тому же требующими для своего питания постоянный ток. К относительно высокому напряжению их можно подключать, лишь соединив несколько светодиодов последовательно в «гирлянду».

Как видно из Рис. 1, пока напряжение через P-N-переход светодиода не достигло порога открывания, ток через него практически не протекает и свет не излучается вообще! Как только переход открылся и через него начал протекать ток, начинается свечение. При этом минимальное приращение напряжения на P-N-переходе ведет к драматическому повышению тока через него (линия вольт-амперной характеристики идет почти вертикально). Если же при этом учесть, что протекание тока через светодиод вызывает его нагрев, при котором падение напряжения на P-N-переходе снижается, то очевидно, что при питании светодиодов стабильным напряжением ток через них будет все время возрастать, пока выделяющееся на кристалле тепло не превысит максимально допустимое значение и он не разрушится от теплового пробоя. Особенно критичен данный эффект для мощных светодиодов (0,5…1…2…5 Вт), которые по определению выделяют достаточно много тепла.

Читайте так же:
Провод для лампочки н11

Поэтому светодиоды следует питать не стабильным напряжением, а стабильным током! А падение напряжения на P-N-переходе будет таким, какое уж получится при данном токе и температуре кристалла. Таким образом, источники питания для светодиодов (их еще называют «драйверами», т.е. «водителями») являются стабилизаторами тока.

Поскольку мы здесь рассматриваем только сетевые источники питания, то опустим особенности конструкции низковольтных светодиодных лент и светодиодных фонариков.

По принципу стабилизации выходного тока светодиодные драйверы, питающиеся от сети переменного тока напряжением 230 В (с 2014 г. действует ГОСТ 32144-2013, в котором это напряжение задекларировано вместо привычных 220 В), можно подразделить:

— на базе реактивного сопротивления балластного конденсатора
— на базе импульсных преобразователей входного переменного напряжения в постоянный выходной ток

Конденсаторный драйвер является самым простым по конструкции, но в то же время и с самыми отвратительными характеристиками излучаемого света. Поскольку на частоте 50 Гц через балластный конденсатор протекает примерно 70 мА тока на каждую микрофараду емкости, то очевидно, что для питания даже одноваттных светодиодов током до 350 мА, потребуется емкость порядка 4…5 мкФ. Габариты такого конденсатора будут чрезмерно большими, а пульсации яркости светильника с таким драйвером — неприемлемо высокими.

Рис. 2 Пульсации яркости светодиодной лампы с конденсаторным драйвером, фиксируемые камерой смартфона (горизонтальные чередующиеся темные и светлые полосы)

У конденсаторных драйверов есть еще оно крайне неприятное свойство. При подаче питания на пике синусоиды сетевого напряжения импульс тока через конденсатор намного превышает допустимый для светодиодов, вызывая их электрический пробой.

На Рис. 3 приведены фото двух светодиодных ламп. Слева — с конденсаторным драйвером и справа – с полупроводниковым преобразователем. Как видно, пульсации яркости левой лампы с частотой сети не позволяют отнести ее к категории полезных для глаз.

Таким образом, задачей драйвера, предназначенного для питания светодиодных светильников, является формирование стабильного тока через них, при напряжении, соответствующем текущему падению на цепочке светодиодов.

По принципу связи с питающим сетевым напряжением транзисторные драйверы можно подразделить на изолированные, в которых выходные клеммы подачи напряжения на светодиоды (т.н. «холодная» часть), никак не связаны гальванически со входными цепями («горячая» часть) и неизолированные, в которых выходные клеммы тоже «горячие», т.е. гальванически соединены со входными. Драйверы первого типа предназначены для светильников, эксплуатирующихся под открытым небом и подвергающихся всем воздействиям непогоды (сырость, туман, дождь, снег и т.п.), а также в сырых помещениях и в ручных светильниках. Драйверы второго типа можно использовать в стационарных светильниках, размещаемых в помещениях с низкой влажностью, если не предусматривается прикосновения к ним руками. Конечно, и в этих случаях можно использовать драйверы первого типа, если устраивает их цена (первые, как правило, дороже вторых).

Опциональным (необязательным, но весьма желательным) узлом драйверов, а для светильников мощностью 20 Вт и более — обязательным, является корректор коэффициента мощности (ККМ или англоязычный термин —Power Factor Corrector, PFL). Он существенно снижает влияние выпрямителя с емкостным фильтром на форму сетевого напряжения (Рис. 4).

Диодно-конденсаторный корректор

Рис. 4 Искажения формы сетевого напряжения из-за влияния выпрямителя
с емкостным фильтром без корректора коэффициента мощности

Высокопроизводительный ККМ с хорошими параметрами выполняется на специализированных микросхемах. Рекомендуемый иногда (с целью удешевления) пассивный диодно-конденсаторный ККМ (Рис. 5) увеличивает уровень пульсаций выпрямленного сетевого напряжения, а следовательно, пульсаций яркости светильников и для глаз также не полезен.

На входе преобразователя обычно размещается сетевой противопомеховый конденсаторно-дроссельный фильтр (Рис. 6), главной задачей которого является отнюдь не защита самого преобразователя, а наоборот — предотвращение проникновения импульсных помех, формируемых преобразователем, в сеть, поскольку они могут привести к сбоям некоторых электронных устройств (модемы, телефоны и т.п.). В состав ККМ он обычно входит по умолчанию (Рис. 6).

Важным параметром источников питания светодиодных светильников является мощность, которую они могут обеспечить на светодиодах. Не углубляясь в обсуждение принципиальной разницы между вольт-амперами (В˖А) и Ваттами (Вт) и учитывая, что на каждом P-N-переходе падает 3…3,3 В, можно прикинуть, что светодиод мощностью один ватт потребляет ток, равный 0,3…0,35 А. Двухваттный — соответственно, 0,6…0,7 А и т.д. Мощность светодиодов, соединенных последовательно, суммируется, а поскольку на каждом из них падают те же 3…3,3 В, то суммируется и падение напряжения на их цепочке, тогда, как ток через нее остается неизменным, независимо от количества последовательно включенных светодиодов. Указанные токи являются максимально допустимыми при длительной (непрерывной) работе, разогревая кристалл светодиода до достаточно высоких температур. Практически для работы выбирают примерно 80 % от максимального значения допустимого тока. Яркость свечения при этом падает незначительно (практически незаметно для глаз), а вот нагрев — существенно, продлевая срок функционирования светодиодов.

Читайте так же:
Электропроводка от розетки до лампы

Хотя выше было указано, что выходное напряжение источника питания светодиодных светильников является вторичным и некритичным параметром, вместе с тем, его следует учитывать при выборе драйвера. Если в техническом описании указано, что он способен обеспечить на выходе 15…115 В, то значит, что к такому драйверу можно подключить от 5 до 36 светодиодов, соединенных последовательно в одну цепочку (3…3,3 В ˖ 5…36 = 15…118 В).

Размеры драйвера хоть и являются второстепенным параметром, однако, могут сыграть определенную роль в конструкции светодиодных светильников, обеспечивая их миниатюризацию.

В заключение хотелось бы развеять широко распространенное заблуждение о необходимости защиты выхода светодиодного драйвера от короткого замыкания. Для стабилизаторов напряжения справедлива редакция формулы закона Ома:

где: I — ток нагрузки, U — выходное напряжение, R — сопротивление нагрузки.

При R, стремящемся к бесконечности (отсутствие нагрузки), выходной ток I стремится к нулю независимо от значения выходного напряжения U. И наоборот, при коротком замыкании (К.З.) выхода (R → 0) выходной ток стремится к бесконечности. Естественно, такой аварийной ситуации следует избегать, вводя в схему узел защиты от превышения выходного тока.

Для светодиодных драйверов, являющихся стабилизаторами тока, действует другая редакция формулы закона Ома:

Исходя из нее, видим, что при стремящемся к нулю сопротивлении нагрузки, к нулю стремится и выходное напряжение, независимо от установленного тока. Это значит, что режим К.З. их выхода (в отличие от стабилизаторов напряжения) является штатным. Иными словами, выходной ток больше того, на который настроен драйвер, не будет превышен никогда! А вот обрыв нагрузки, при котором ее сопротивление стремится к бесконечности, ведет к такому же, стремящемуся к бесконечности, росту выходного напряжения. Поскольку идеальных компонентов не бывает, это напряжение «найдет себе дорогу», разрушив (пробив) выходные цепи драйвера (Рис. 7). Поэтому светодиодный драйвер обязательно должен быть защищен от аварийного обрыва нагрузки, который является намного более вероятным, чем К.З.

Разрушение сетевого драйвера

Рис. 7 Разрушение сетевого драйвера светодиодного светильника
вследствие обрыва цепочки питаемых им светодиодов

Электрооборудование, выполненное непрофессионалами не сможет должным образом обеспечить надёжную работу ваших светодиодных светильников. Покупайте продукцию только у проверенных производителей.

Лампа накаливания на постоянном токе и регулировка яркости

Фильтры НЧ и ВЧ на постоянном токе?
Нижеприведенная схема работает на 3V, если подключить эту схему на телефон, то.

Лампа накаливания (посиделки)
нужно продолжить схему на схеме показана разетка и провод,нужно дойти до лампы с формулами и как.

Регулировка яркости подсветки дисплея
Привет. Подскажите вариантов регулировки подсветки дисплея. Думал можно на подсветку частотой.

Расчет электронных схем на постоянном токе
Для заданного электронного круга, который работает в режиме постоянного тока при отсутствии.

Сообщение от Vyssir
Сообщение от Vyssir

Эффект мерцания на лампах накаливания, отсутствует, так как говорили ввыше она имеет тепловую инерцию.
Тем более, постоянного тока там точно не будет, разве что пульсирующий однополярный.

смысла в этом точно-нету.

Сообщение от Vyssir
Сообщение от HitysoptirX
Сообщение от omokost
Сообщение от HitysoptirX

При хорошем зрении можно увидеть эффект мерцания на лампах 8. 15 Вт в холодильнике. Чем тоньше спираль, тем меньше тепловая инерция. У ламп >= 40 вт инерция незаметна. Приведите подверждение своих слов.

Всега улыбало, когда от сути начинают уходить в частности.
По умолчанию понятно, что чем меньще тепловая емкость тем выше глубина модуляции. (касательно маломощных ламп)
Тем более если говорить о холодильнике, дополнительную модуляцию вносит и сам компрессор. (именно это модуляцию вы и видете)
Для эксперимента, эту же лампу воткните в "чистую" сеть.
Да и ут разговор о мощностях 60-100 Ватт, имеющим большую тепловую инерцию и т.д.
Так что беспокоиться о том что она сильно мерцает-нет смысла..

Сообщение от omokost
Сообщение от Vyssir

Регулировать люминесцентную лампу целое искусство. Изменение тока через лампу резко нарушает режим работы лампы, температуру катодов например. Вследствие этого катоды начинают испаряться и лампа темнеет или сгорает раньше времени. И КПД падает. А зачем заморачиваться с люминесцентными лампами, если не ради их КПД и долговечности?

Регулировать их яркость можно в небольшие пределах, ну 20% например, далее идет сплошное шаманство на свой страх и риск 🙂
Обычно в офисах делают 2-3 группы светильников, вот и вся регуляция света, просто и надежно. Можно по одному светильники включать и выключать.

И люминесцентные лампы мигают, когда быстро двигаешь рукой или блестящим предметом он расплывается в пунктирную линию, прикольно, но со временем это раздражает и глаза устают, заметил не только я, но и коллеги. Виноваты может и лампы, а главное примитивный тупой дроссель. Думаю в офисе над своей головой заменить дроссели на электронные балласты, благо они копейки стоят, пульсации должны будут гарантированно уйти. Если китайцы на электролитах конечно не сэкономят. И КПД светильников выше будет, при питании ВЧ током они ярче светят (там сложные процессы в газе) и электронный балласт греется меньше (там греться нечему, типа как в цоколе энергосберегаек).

Читайте так же:
Последовательное подключение лампочек через выключатель

Если автору нужно регулировать яркость тут только светодиоды, благо они стали дешевые. Но что люминесцентлые лампы, энергосбергайки или светодиоды, имеют сложнный спектр, и надо выбрать источник света с нормальным спектром, обычно это брэндовые и чуть более дорогие приборы. Дешевые люминофоры гадким образом искажают цвета, тоже малоприятно, но с этим вопросом не заморачивался, не дизайнер и не фотограф. Совсем дрянные люминофоры от которых слезы текут и мелкие предметы расплываются к счастью редкость 🙂

Был свидетелем как одни из первых светодиодных светильников в городе поставили в библиотеке, в читальном зале, а через 3 дня вернули обычные люминесцентные светильники, а светодиодные раскидали по подвалам и туалетам, тогда светодиоды были вообще никакие, и на них еще пилили бюджет вся цепочка посредников, светодиоды были самые дешевые естественно.

Тема: Питание накала лампы постоянным напряжением

Питание накала лампы постоянным напряжением

Не нашел однозначной инфы на эту тему.

Какие лампы — звуковые. В основном двойные триоды разные (6Н1,6Н2,6Н23П, 6Н3П, дичь вроде 6Ж1П.

Чем плохо питать накал постоянным напряжением?

Скажем, накал лампы 6,3В — питаем от стабилизатора типа 7806.

Или даже есть вариант — минусовым — от 7906. (потому что есть платы двойного стаба, где можно на плюс воткнуть 7824, а на минус — 7906).

Однозначного ответа в справочниках по лампам не нашел.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

Сообщение от Black_Panther

Можно и без информации. Просто подумать.

Питаем как угодно, хоть переменным, хоть постоянным. Кроме случаев микрофонного усилителя или фонокорректора, там лучше постоянным.
Ходят слухи, что 6,3 появилось не просто так. И с переменкой тогда было не так, чтобы очень. То есть, с ней было хорошо, плохо было без неё.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

Сообщение от Black_Panther

Не нашел однозначной инфы на эту тему.

Какие лампы — звуковые. В основном двойные триоды разные (6Н1,6Н2,6Н23П, 6Н3П, дичь вроде 6Ж1П.

Чем плохо питать накал постоянным напряжением?

Скажем, накал лампы 6,3В — питаем от стабилизатора типа 7806.

Или даже есть вариант — минусовым — от 7906. (потому что есть платы двойного стаба, где можно на плюс воткнуть 7824, а на минус — 7906).

Однозначного ответа в справочниках по лампам не нашел.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

Сообщение от stan marsh

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

Сообщение от al2sav

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

Сообщение от pyos

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

Сообщение от Alex

100 в накал и нет ёго.

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

Сообщение от Alex
Сообщение от Elms

100 в накал и нет ёго.

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Питание накала лампы постоянным напряжением

Вот, кстати, всякие умножители напряжения частенько встречаются во многих китайских ламповых предах и буферах.
Интересно, насколько это плохо или хорошо.

В частности есть на руках такой зверь, купленный от нечего делать:

Вопрос тупо про умножители.

У меня есть катодный повторитель на одной 6Н23П с низковольтным анодным, подключенный к STK459 и новый ламповый усь ArtAudioLab m.20.1 на 6П3С (нет, там не "кобры" — обычные трёшки 62года). На Авито нашел даму, у которой куча этих новых усей. Купил. Мне хватает. Пока доволен. AAL М25 не хочу, было оно у меня когда-то в ремонте.

Пробовал к китайцу подпаять напрямую +-32В от БП УНЧ в обход умножителя и +6В от 7806 подавал — особой разницы не ощутил.
Может дело в китайской 6J1 и стоит попробовать авитно купить советскую 6Ж1П?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector