Последовательное и параллельное соединение
Последовательное и параллельное соединение
Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.
При последовательном соединении проводников сила тока во всех проводниках одинакова. При этом общее напряжение в цепи равно сумме напряжений на концах каждого из проводников.
При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включённых проводников.
Содержание
Последовательное соединение [ править | править код ]
Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника питания, равно сумме напряжений на отдельных участках цепи: U = U 1 + U 2 + ⋯ + U n
Резисторы [ править | править код ]
Катушка индуктивности [ править | править код ]
Электрический конденсатор [ править | править код ]
Мемристоры [ править | править код ]
Выключатели [ править | править код ]
Цепь замкнута, когда замкнуты все выключатели. Цепь разомкнута, когда разомкнут хотя бы один выключатель. (См.также Логическая операция И).
Параллельное соединение [ править | править код ]
Сила тока в неразветвлённой части цепи равна сумме сил тока в отдельных параллельно соединённых проводниках: I = I 1 + I 2 + ⋯ + I n
Напряжение на участках цепи АВ и на концах всех параллельно соединённых проводников одно и то же: U = U 1 = U 2 = ⋯ = U n
Резисторы [ править | править код ]
При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость 1 R
Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.
Так как заряд при разветвлении тока сохраняется (см. Законы Кирхгофа), то: I = I 1 + I 2 + I 3 + …
Для двух параллельно соединённых резисторов их общее сопротивление равно: R = R 1 R 2 R 1 + R 2
При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.
Ток проводников в параллельном и последовательном соединении
Практически каждому, кто занимался электрикой, приходилось решать вопрос параллельного и последовательного соединения элементов схемы. Некоторые решают проблемы параллельного и последовательного соединения проводников методом «тыка», для многих «несгораемая» гирлянда является необъяснимой, но привычной аксиомой. Тем не менее, все эти и многие другие подобные вопросы легко решаются методом, предложенным еще в самом начале XIX века немецким физиком Георгом Омом. Законы, открытые им, действуют и поныне, а понять их сможет практически каждый.
Основные электрические величины цепи
Для того чтобы выяснить, как то или иное соединение проводников повлияет на характеристики схемы, необходимо определиться с величинами, которые характеризуют любую электрическую цепь. Вот основные из них:
- Электрическое напряжение, согласно научному определению, это разность потенциалов между двумя точками электрической цепи. Измеряется в вольтах (В). Между клеммами бытовой розетки, к примеру, оно равно 220 В, на батарейке вольтметр покажет 1,5 В, а зарядное устройство вашего планшета или смартфона выдает 5 В. Напряжение бывает переменным и постоянным, но в нашем случае это несущественно.
- Электрический ток – упорядоченное движение электронов в электрической цепи. Ближайшая аналогия – ток воды в трубопроводе. Измеряется в амперах (А). Если цепь не замкнута, ток существовать не может.
- Электрическое сопротивление. Величина измеряется в омах (Ом) и характеризует способность проводника или электрической цепи сопротивляться прохождению электрического тока. Если продолжить аналогию с водопроводом, то новая гладкая труба будет иметь маленькое сопротивление, забитая ржавчиной и шлаками – высокое.
- Электрическая мощность. Эта величина характеризует скорость преобразования электрической энергии в любую другую и измеряется в ваттах (Вт). Кипятильник в 1000 Вт вскипятит воду быстрее стоваттного, мощная лампа светит ярче и т.д.
Взаимная зависимость электрических величин
Теперь необходимо определиться, как все вышеперечисленные величины зависят одна от другой. Правила зависимости несложны и сводятся к двум основным формулам:
- I=U/R.
- P=I*U.
Здесь I – ток в цепи в амперах, U – напряжение, подводимое к цепи в вольтах, R – сопротивление цепи в омах, P – электрическая мощность цепи в ваттах.
Предположим, перед нами простейшая электрическая цепь, состоящая из источника питания с напряжением U и проводника с сопротивлением R (нагрузки).
Поскольку цепь замкнута, через нее течет ток I. Какой величины он будет? Исходя из вышеприведенной формулы 1, для его вычисления нам нужно знать напряжение, развиваемое источником питания, и сопротивление нагрузки. Если мы возьмем, к примеру, паяльник с сопротивлением спирали 100 Ом и подключим его к осветительной розетке с напряжением 220 В, то ток через паяльник будет составлять:
Какова мощность этого паяльника? Воспользуемся формулой 2:
2,2 * 220 = 484 Вт.
Хороший получился паяльник, мощный, скорее всего, двуручный. Точно так же, оперируя этими двумя формулами и преобразуя их, можно узнать ток через мощность и напряжение, напряжение через ток и сопротивление и т.д. Сколько, к примеру, потребляет лампочка мощностью 60 Вт в вашей настольной лампе:
60 / 220 = 0,27 А или 270 мА.
Сопротивление спирали лампы в рабочем режиме:
220 / 0,27 = 815 Ом.
Схемы с несколькими проводниками
Все рассмотренные выше случаи являются простыми – один источник, одна нагрузка. Но на практике нагрузок может быть несколько, и соединены они бывают тоже по-разному. Существует три типа соединения нагрузки:
- Параллельное.
- Последовательное.
- Смешанное.
Параллельное соединение проводников
В люстре 3 лампы, каждая по 60 Вт. Сколько потребляет люстра? Верно, 180 Вт. Быстренько подсчитываем сначала ток через люстру:
180 / 220 = 0,818 А.
А затем и ее сопротивление:
220 / 0,818 = 269 Ом.
Перед этим мы вычисляли сопротивление одной лампы (815 Ом) и ток через нее (270 мА). Сопротивление же люстры оказалось втрое ниже, а ток — втрое выше. А теперь пора взглянуть на схему трехрожкового светильника.
Схема люстры с тремя лампами
Все лампы в нем соединены параллельно и подключены к сети. Получается, при параллельном соединении трех ламп общее сопротивление нагрузки уменьшилось втрое? В нашем случае — да, но он частный – все лампы имеют одинаковые сопротивление и мощность. Если каждая из нагрузок будет иметь свое сопротивление, то для подсчета общего значения простого деления на количество нагрузок мало. Но и тут есть выход из положения – достаточно воспользоваться вот этой формулой:
1/Rобщ. = 1/R1 + 1/R2 + … 1/Rn.
Для удобства использования формулу можно легко преобразовать:
Rобщ. = (R1*R2*… Rn) / (R1+R2+ … Rn).
Здесь Rобщ. – общее сопротивление цепи при параллельном включении нагрузки. R1 … Rn – сопротивления каждой нагрузки.
Почему увеличился ток, когда вы включили параллельно три лампы вместо одной, понять несложно – ведь он зависит от напряжения (оно осталось неизменным), деленного на сопротивление (оно уменьшилось). Очевидно, что и мощность при параллельном соединении увеличится пропорционально увеличению тока.
Последовательное соединение
Теперь настала пора выяснить, как изменятся параметры цепи, если проводники (в нашем случае лампы) соединить последовательно.
Последовательно соединенная нагрузка
Расчет сопротивления при последовательном соединении проводников исключительно прост:
Те же три шестидесятиваттные лампы, соединенные последовательно, составят уже 2445 Ом (см. расчеты выше). Какими будут последствия увеличения сопротивления цепи? Согласно формулам 1 и 2 становится вполне понятно, что мощность и сила тока при последовательном соединении проводников упадет. Но почему теперь все лампы горят тускло? Это одно из самых интересных свойств последовательного подключения проводников, которое очень широко используется. Взглянем на гирлянду из трех знакомых нам, но последовательно соединенных ламп.
Последовательное соединение трех ламп в гирлянду
Общее напряжение, приложенное ко всей цепи, так и осталось 220 В. Но оно поделилось между каждой из ламп пропорционально их сопротивлению! Поскольку лампы у нас одинаковой мощности и сопротивления, то напряжение поделилось поровну: U1 = U2 = U3 = U/3. То есть на каждую из ламп подается теперь втрое меньшее напряжение, вот почему они светятся так тускло. Возьмете больше ламп – яркость их упадет еще больше. Как рассчитать падение напряжения на каждой из ламп, если все они имеют различные сопротивления? Для этого достаточно четырех формул, приведенных выше. Алгоритм расчета будет следующим:
- Измеряете сопротивление каждой из ламп.
- Рассчитываете общее сопротивление цепи.
- По общим напряжению и сопротивлению рассчитываете ток в цепи.
- По общему току и сопротивлению ламп вычисляете падение напряжения на каждой из них.
Хотите закрепить полученные знания? Решите простую задачу, не заглядывая в ответ в конце:
В вашем распоряжении есть 15 однотипных миниатюрных лампочек, рассчитанных на напряжение 13,5 В. Можно ли из них сделать елочную гирлянду, подключаемую к обычной розетке, и если можно, то как?
Смешанное соединение
С параллельным и последовательным соединением проводников вы, конечно, без труда разобрались. Но как быть, если перед вами оказалась примерно такая схема?
Смешанное соединение проводников
Как определить общее сопротивление цепи? Для этого вам понадобится разбить схему на несколько участков. Вышеприведенная конструкция достаточно проста и участков будет два — R1 и R2,R3. Сначала вы рассчитываете общее сопротивление параллельно соединенных элементов R2,R3 и находите Rобщ.23. Затем вычисляете общее сопротивление всей цепи, состоящей из R1 и Rобщ.23, соединенных последовательно:
- Rобщ.23 = (R2*R3) / (R2+R3).
- Rцепи = R1 + Rобщ.23.
Задача решена, все очень просто. А теперь вопрос несколько сложнее.
Сложное смешанное соединение сопротивлений
Как быть тут? Точно так же, просто нужно проявить некоторую фантазию. Резисторы R2, R4, R5 соединены последовательно. Рассчитываем их общее сопротивление:
Теперь параллельно к Rобщ.245 подключаем R3:
Rобщ.2345 = (R3* Rобщ.245) / (R3+ Rобщ.245).
Ну а дальше все очевидно, поскольку остались R1, R6 и найденное нами Rобщ.2345, соединенные последовательно:
Rцепи = R1+ Rобщ.2345+R6.
Ответ на задачу о елочной гирлянде
Лампы имеют рабочее напряжение всего 13.5 В, а в розетке 220 В, поэтому их нужно включать последовательно.
Поскольку лампы однотипные, напряжение сети разделится между ними поровну и на каждой лампочке окажется 220 / 15 = 14,6 В. Лампы рассчитаны на напряжение 13,5 В, поэтому такая гирлянда хоть и заработает, но очень быстро перегорит. Чтобы реализовать задумку, вам понадобится минимум 220 / 13,5 = 17, а лучше 18-19 лампочек.
Последовательное соединение ламп постоянный ток 1
Получилась всем известная (а, значит, будем считать и понятная — гирлянда). При таком соединении ток I будет всюду одинаковый независимого от того, что будут ли это одинаковые лампы на одно и то же напряжение или на разные. Надо сразу оговориться, что одинаковыми считаюся лампы, на которых:
1)указаны одно и тоже напряжение и ток(подобно лампочкам от карманного фонаря);
2)указаны одно и тоже напряжение и мощность(подобно лампам освещения).
Напряжение U истотчника питания в этом случае "раскидается" по всем лампам, т.е. U = U1 + U2 +U3. При этом, если лампы одинаковые — на всех них напряжение будет одинаковым. Если лампы не одинаковые, то в зависимости от сопротивления каждой конкретной лампы. В первом случае напряжение на каждой лампе можно легко вычислить, разделив напряжение источника на общее количество ламп. Во втором случае надо покопаться в вычислениях. Все это мы рассмотрим в задачах этого раздела. Итак, мы выяснили, что при последовательном соединении проводников(в данном случае — ламп) напряжение U на концах всей цепи равно сумме напряжений последовательно включенных проводников(ламп) — U = U1 + U2 +U3. По закону Ома для участка цепи: U1 = I*R1, U2 = I*R2, U3 = I*R3,U = I*R где R1 — сопротивление нити первой лампы(проводника), R2 — второй и R3 — третьей, R — полное сопротивление всех ламп. Заменив в выражении "U = U1 + U2 +U" значение U на I*R, U1 на I*R1, U2 на I*R2, U3 на I*R3, получим I*R = I*(R1+R2+R3). Отсюда R = R1+R2+R3. Вывод: при последовательном соединении проводников их общее сопротивление равно сумме сопротивлений всех проводников. Сделаем вывод: последовательное включение применяется для нескольких потребителей(например, ламп новогодней гирлянды) с напряжением питания меньшим напряжения источника.
Случай параллельного соединения проводников показан на рис.4. При параллельном соединении проводников их начала и концы имеют общие точки подключения к источнику. При этом напряжения на всех лампах(проводниках) одинаково независимо от того, какая из них и на какое напряжение рассчитана, так они напрямую подключены к источнику. Естественно, если лампа на меньшее напряжение, чем источник напряжения — она перегорит. А вот ток I будет равен сумме токов во всех лампах, т.е. I = I1 + I2 + I3. И лампы могут быть разной мощности — каждая будет брать тот ток, на который рассчитана. Это можно понять, если вместо источника представить розетку с напряжением 220В, а вместо ламп — подключенные к ней, например, утюг, настольная лампа и зарядныое устройство от телефона. Сопротивление каждого прибора в такой цепи определяется делением его напряжения на ток, который оно потребляет. опять-таки по закону Ома для участка цепи, т.е.
. Сразу изложим тот факт, что есть величина, обратная сопротивлению и называется она — проводимость. Обозначается она Y. В системе СИ обозначается как См (Сименс). Обратная сопротивлению означает, что
. Не вдаваясь в математические выводы, сразу скажем, что при параллельном соединении проводников(будь то лампы, утюги, микроволновки или телевизоры) величина, обратная общему сопротивлению, равна сумме величин, обратных сопротивлениям всех параллельно включенных проводников, т.е.
. Учитывая, что
— иногда в задачах пишут Y = Y1 + Y2 + Y3. Это одно и то же. Есть также более удобная формула для нахождения общего сопротивления двух параллельно включенных сопротивлений. Выглядит она так:
. Сделаем вывод: параллельный способ включения применяется для подключения ламп освещения и бытовых электроприборов к электрической сети.
Как мы выяснили, столкновения свободных электронов в проводниках с атомами кристаллической решетки тормозят их поступательное движение.. Это противодействие направленному движению свободных электронов, т.е. постоянному току, составляет физическую сущность сопротивления проводника. Аналогичен механизм сопротивления постоянному току в электролитах и газах. Проводящие свойства материала определяют его объемное удельное сопротивление ρ v, равное сопротивлению между противоположными сторонами куба с ребром 1м, изготовленного из данного материала. Величина обратная объемному удельному сопротивлению, называется объемной удельной проводимостью и равна γ = 1/ ρ v. Единицей объемного сопротивления служит 1Ом*м, объемной удельной проводимости — 1См/м. Сопротивление проводника постоянному току зависит от температуры. В общем случае наблюдается достаточно сложная зависимость. Но при изменениях температуры в относительно узких пределах (примерно 200°С) ее можно выразить формулой:
где R2 и R1 — сопротивления соответственно при температурах Т1 и Т2; α — температурный коэффициент сопротивления, равный относительному изменению сопротивления при изменении температуры на 1°С.
Важные понятия:
Электротехническое устройство, обладающее сопротивлением и применяемое для ограничения тока, называется резистором. С резисторами можно ознакомиться в отдельной теме:"Электрику о резисторах" . Регулируемый резистор (т.е. имеется возможность изменять его сопротивление) называется реостатом.
Резистивными элементами называются идеализированные модели резисторов и любых других электротехнических устройств или их частей, оказывающих сопротивление постоянному току независимо от физической природы этого явления. Они применяются при составлении схем замещения цепей и расчетах их режимов. При идеализации пренебрегают токами через изолирующие покрытия резисторов, каркасы проволочных реостатов и т.п.
Линейный резистивный элемент является схемой замещения любой части электротехнического устройства, в которой ток пропорционален напряжению. Его параметром служит сопротивление R = const. R = const означает, что значение сопротивления неизменно (const значит постоянна).
Если зависимость тока от напряжения нелинейна, то схема замещения содержит нелинейный резистивный элемент, который задается нелинейной ВАХ (вольт-амперной характеристикой) I(U) — читается как "И от У". На рис.5 приведены вольт-амперные характеристики линейного (линия а) и нелинейного (линия б) резистивных элементов, а также их обозначения на схмах замещения.
Последовательное соединение ламп постоянный ток 1
Современные материалы позволяют изготовить резисторы с самыми разнообразными значениями сопротивлений, но из этого не следует, что отсутствует необходимость разнообразия соединения проводимков друг с другом. Это связано с современными технологиями производства. Потребители электрической энергии к их источникам также присоединяются различными способами.
Различают последовательное, параллельное и смешанное соединения проводников. При последовательном соединении (рис. 43, а) через все резисторы проходит один и тот же ток. При параллельном соединении (рис. 43, б) на всех резисторах создано одно и то же напряжение. При смешанном соединении (рис. 43, в) используются и последовательное, и параллельное соединения проводников.
При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом. На рисунке 44 показано последовательное соединение двух проводников 1 и 2, имеющих сопротивления и
. Это могут быть две лампы, две обмотки электродвигателя и т.д.
Сила постоянного тока в обоих проводниках одинакова: , так как в проводниках электрический заряд в случае постоянного тока не накапливается и через любое сечение проводника за определенный интервал времени проходит один и тот же заряд.
Напряжение (или разность потенциалов) на концах рассматриваемого участка цепи складывается из напряжений на первом и втором проводниках:
.
Применяя закон Ома для участка цепи
Напряжения на проводниках и их сопротивления при последовательном соединении связаны соотношением:
Рис. 1. Параллельное подключение ламп к источнику
Как видите, здесь каждая лампа от Л1 до Л4 соединяется одним контактом к фазному выводу, а вторым, к нулевому. Или в таком же порядке для цепи постоянного тока – один контакт лампы к плюсу, а второй к минусу. Таким образом, получается, что все выводы фазы одинаковые и соединены в одну точку, также в одну точку подключены и нулевые выводы. С технической стороны параллельное подключение может производиться любым количеством ламп от двух и более.
Особенностью этого соединения является подача напряжения от источника E в месте включения контакта от каждой лампы. Соответственно, каждая из ламп получает номинал питания, к примеру, 220 вольт сети придется на пару контактов. Следует отметить, что кроме ламп Ильича параллельное подключение подходит и для любых других типов осветительного оборудования (светодиодных лампочек, люминесцентных, галогенных и т.д.).
Помимо вышеприведенного примера можно встретить и другие способы параллельного подсоединения:
Рис. 2. Варианты смешанного параллельного подключения
Как видите на рисунке выше лампочки Л1 – Л3 на первой схеме имеют параллельное включение по отношению друг к другу. Однако по отношению к резистору R1 и диоду VD1 подключение всей группы будет последовательным. На второй схеме лампы Л1 – Л2 и Л3 – Л4 подключены последовательно по отношению друг к другу, но попарно Л1 – Л2 с парой Л3 – Л4 подключены параллельно. На практике важно учитывать не только особенности конфигурации цепи, но и физические параметры.
Физические параметры
Важным этапом при подключении галогенных, светодиодных или люминесцентных светильников являются физические данные. Основным параметром для всех ламп можно считать омическое сопротивление, на основании которого и рассчитывается потребляемая мощность.
Для примера рассмотрим вариант подключения приборов освещения, как классической резистивной нагрузки:
Рис. 3. Параллельное включение резистивной нагрузки
Так те же нити накаливания представляют собой чисто резистивную нагрузку, поэтому мы их будем рассчитывать, как сумму резисторов R1 – R3. Для параллельных схем включения вычисление суммарного сопротивления всех устройств производится исходя из соотношения:
После преобразования выражение получит вид:
Аналогичным образом вычисление производится для включения люминесцентных и светодиодных светильников. Заметьте, что при расчетах в идеальных условиях сопротивлением соединительных проводов пренебрегают. Такой прием актуален и для большинства осветительных приборов, так как величина получается несоизмеримо меньше. Однако в случае расчета слаботочных ламп или светодиодов сопротивлением проводов не всегда можно пренебречь, поэтому они также участвуют в расчетах.
Преимущества и недостатки
В домашних и производственных целях параллельное подключение широко используется для решения различных задач. При выборе такого способа важно учитывать все за и против, поэтому дальше мы рассмотрим преимущества и недостатки для освещения люминесцентными, накаливания, светодиодными или другими типами ламп.
К преимуществам схемы следует отнести:
- на каждую лампу подается строго установленная величина напряжения, не зависимо от их сопротивления;
- каждая лампа работает на полную мощность, выдавая заявленные номинальные параметры;
- в случае перегорания одной из ламп в цепи остальные продолжат выполнять свои непосредственные функции без каких-либо изменений в штатном режиме.
Недостатки такого способа подключения в большей части связаны с экономическими аспектами или аварийными режимами работы:
- требуется больший расход соединительных проводников при подключении на большие расстояния;
- при повышении напряжения более номинального лампочка светится гораздо сильнее, из-за чего галогенные светильники и лампы Ильича будут чаще выходить со строя;
- начинающие электрики или неискушенные в электротехнике могут запутаться на этапе подключения точечных или других светильников.
Практическое применение
Все соединения в электрических схемах подразделяются на последовательные и параллельные. На практике параллельная схема применяется для любого освещения у вас дома:
- точечных светильников;
- ламп в люстре;
- модулей в светодиодной ленте и т.д.
Не зависимо от конкретного вида подключения и применяемого оборудования, схема будет идентична. В некоторых ситуациях, чтобы подключить точечных светильник применяется блок питания или электронный трансформатор, в других монтаж люминесцентных ламп производится напрямую от сети, что показано на рисунке ниже:
Рис. 4. Подключение светильников по комнатам