Aviatreid.ru

Прокат металла "Авиатрейд"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подключить розетку на 380 вольт

Как подключить розетку на 380 вольт

Как подключить розетку на 380 вольт Все электрические приборы, потребляющие электроэнергию создаются производителями по государственным стандартам, когда на обмотки электродвигателей, нити накала источников света, нагреватели и другие исполнительные устройства необходимо подать напряжение строго определённым образом.

Для этого используется кабель питания, который подключен с одной стороны к клеммам прибора, а с противоположной — на вилку, вставляемую в розетку так, чтобы обеспечить правильную работу исполнительного механизма.

С этой же целью контакты электрической розетки необходимо подключать к электропроводке, соблюдая установленные правила монтажа, а не произвольно. Даже в современной однофазной сети переменного тока по существующим правилам используется три провода, а не два.

Это раньше, в схеме электрооборудования с заземлением, выполненным по системе TN-C, произвольное подключение проводов фазы и ноля на контакты розетки создавало только неудобства электрику, занимающемуся поиском повреждений, но не влияло на работу приборов.

Сейчас же неправильное подключение проводов к трехконтактной розетке приведет к изменению порядка подачи напряжения, нарушению работы исполнительного механизма, создаст неисправность, вызывающую аварийную ситуацию.

Конструкции трехфазных розеток на 380 вольт

Старые устройства вилок и розеток

В советское время внутри трехфазной проводки сети 0,4 кВ применялась четырехжильная электропроводка, состоящая из трех фаз и одного рабочего нуля. Для подключения электрических потребителей создавали стационарно устанавливаемые розетки с утопленными в корпус контактами типа «мама» и вилки, использующие выступающие контактные пластины — «папа».

На корпусе вилки и розетки выполнялась маркировка, обозначающая фазные клеммы и нулевую. Рабочий ноль часто показывали стандартным значком заземления.

Маркировку выполняли как с лицевой стороны корпуса, так и с тыльной — там, где подключаются провода. Она упрощала монтаж, делала удобной проверку схемы при наладке и эксплуатации.

Старые вилки и розетки с четырьмя контактами сейчас продолжают надежно работать в схемах трехфазной электропроводки, собранных по системе заземления оборудования TN-C. Они же могут успешно использоваться в современной пятипроводной схеме.

Современные конструкции

Переход на новую схему заземления электрооборудования TN-S и ее модификации обязывает владельцев подключать электрические трехфазные устройства в работу через пять проводов, четыре из которых остались прежними (три фазы и ноль), а дополнительно добавился защитный ноль, или РЕ проводник.

Поэтому на вилке и розетке стали устанавливать пять контактов и маркировать их тем же способом с двух сторон каждого корпуса.

Одна из модификаций трехфазной розетки на 380 вольт показана на фотографии с открытой крышкой.

Пятиконтактная трехфазная розетка на 380 вольт

Способы подключения проводов к розетке

В современных конструкциях используются два метода:

1. с помощью винтового крепления;

2. безвинтовой зажим.

Первый способ

Для подключения проводов с обратной стороны корпуса обычно применяют винтовой зажим, когда очищенный от изоляции конец провода вставляется в подготовленное гнездо и прижимается в нем усилием ввернутого винта.

Этот метод используется очень давно и хорошо себя зарекомендовал. Но, он требует определенного времени на разделку концов кабеля и заворачивание винта.

Обратная сторона пятиконтактной трехфазной розетки на 380 вольт

Контакты для подключения проводов обычно обозначают:

фазные концы — L1, L2, L3;

рабочий ноль — N;

защитный РЕ проводник — стандартным значком заземления.

Второй способ

Безвинтовое соединение проводов трехфазных электрических розеток разработано для экономии времени электромонтажников и позволяет исключить некоторые их ошибки при работе. Все операции выполняются значительно быстрее, а при соблюдении правильной технологии надежность соединения обеспечивается полностью.

Способ безвинтового подключения провода к контакту розетки такой конструкции показан четырьмя фотоснимками.

Подключение провода безвинтовым зажимом

Первый снимок демонстрирует, что изоляция с конца провода при его подготовке не снимается, остается на месте. Она для создания электрического контакта с клеммой розетки будет просто проколота специальным встроенным зажимом.

На второй фотографии провод установлен в посадочное гнездо и утоплен вниз до упора.

На третьем этапе провод удерживается в предыдущей позиции №2, а в специальный паз розетки вставляется обычная отвертка с плоским лезвием.

Затем рукоятку отвертки просто поднимают вверх, как показано на фото 4, а конструкция подвижного гнезда опускается вниз, внутрь корпуса розетки. При этом происходит прорезание изоляции и зажим металлической жилы.

Мастеру остается только убрать отвертку, продернуть конец провода, чтобы убедиться на всякий случай в его надежном удержании внутри гнезда.

Схемы подключения трехфазных розеток на 380 вольт

Схема подключения пятиконтактной розетки на 380 вольт

Чтобы от источника напряжения 0,4 кВ электрический ток правильно пришел к исполнительному механизму трехфазного электроприбора необходимо правильно по определенной схеме подключить провода к электрической розетке.

За ее основу принят тот принцип, что вся расходуемая электроэнергия учитывается счетчиком и проходит через него. Далее монтируют защиты из трехфазного автоматического выключателя, который предназначен устранять последствия перегрузок в сети и возникновения коротких замыканий.

Способы подключения пятиконтактных розеток

Провода трех фаз и рабочего нуля, по которым проходят токи нагрузки от выключателя, подключают на свои контакты розетки.

Для правильной и надежной работы схемы должен быть соблюден баланс между:

отключающими возможностями автоматического выключателя;

мощностью нагрузки, создаваемой электрическим потребителем;

тепловой и токонесущей способностью проводов и конструкции розетки с вилкой;

диэлектрической прочностью изоляции.

Пятый защитный контакт розетки посредством отдельного РЕ проводника подключается безразрывным соединением с шиной РЕ здания.

Так работает типовая упрощенная схема подключения трехфазной пятиконтактной розетки на 380 вольт в современной электропроводке. Она во многих случаях может модернизироваться, например, когда необходимо выполнить какую-нибудь дополнительную защиту.

Как пример, рассмотрим вариант подключения электрического прибора, требующего повышенной безопасности от возможного возникновения токов утечек через нарушенную изоляцию на корпус.

В таких случаях применяют УЗО — устройство защитного отключения, подключаемое сразу за силовым автоматическим выключателем перед кабелем, питающим розетку. Автомат станет защищать еще и УЗО.

Вместо двух модульных устройств: автоматического выключателя и УЗО можно использовать одну конструкцию: дифференциальный автомат, который одновременно выполняет их функции. Схема его подключения и приведена ниже.

Схема подключения пятиконтактной розетки на 380 вольт с УЗО

Как видим, переход на нее от предыдущей осуществляется только заменой автоматического выключателя дифференциальным. Больше никаких других действий выполнять не требуется, даже вся проводка остается проложенной прежним методом.

Способы подключения четырехконтактных розеток

Модели старых трехфазных коммутационных устройств на четыре контакта вполне нормально можно эксплуатировать в современной пятипроводной схеме, использующую систему заземления TN-S.

В этой ситуации обеспечение безопасности от токов утечек придется возложить на РЕ проводник, который соединяет главную шину заземления РЕ не с защитным контактом розетки, который отсутствует, а подключить его непосредственно к металлическому корпуса трехфазного потребителя, как показано на рисунке ниже.

Схема подключения четырехконтактной розетки на 380 вольт

В этой ситуации работающий электрический прибор должен быть установлен стационарно. Безопасно эксплуатировать мобильные потребители при такой схеме питания затруднительно: придется при каждом подключении дополнительно перемонтировать РЕ проводник.

Способы проверки монтажа трехфазной розетки на 380 вольт

Собрав любую электрическую схему до ввода ее в эксплуатацию всегда надо убедиться в том, что ошибки монтажа отсутствуют, напряжение подводится правильно, строго по проекту.

В большинстве случаев для многих механизмов станков допускается фазные провода к розетке и вилке подключать произвольно, но не на клеммы рабочего или защитного нуля. Это может сказаться только на направлении вращения трехфазного электродвигателя: сменится чередование фаз токов, протекающих по рабочим обмоткам статора.

Для исправления подобного случая достаточно поменять местами — переподключить два любых удобных фазных провода между собой. Тогда двигатель станет вращаться в нужную сторону. Этот же прием используется магнитными пускателями, осуществляющими реверс электродвигателя.

А вот менять местами рабочий и защитный ноль запрещено, ни в коем случае нельзя: нарушится работа защит и безопасность пользования электроустановкой.

После монтажа электрической схемы для питания трехфазной розетки сразу выполняют:

внешний осмотр всех собранных цепочек и надежность созданных контактов;

электрические замеры сопротивления изоляции жил между собой и на корпус.

Электрическую прочность изоляции позволяет оценить мегаомметр. Когда его под рукой нет, а работа требует быстрого завершения, то опытному мастеру можно довериться проверенным защитам — УЗО и автоматическому выключателю, которые должны сработать при неправильном монтаже и устранить последствия ошибок.

Но, до подачи напряжения предварительно все равно необходимо выполнить электрические замеры сопротивления собранных цепочек хотя бы омметром или тестером, переключенным в этот режим, естественно, при отключенном вводном автоматическом выключателе.

Эту операцию проводят четырьмя этапами в следующей последовательности:

1. один щуп омметра с зажимом типа «крокодил» устанавливают на защитный контакт розетки, а вторым последовательно проходят по остальным ее контактам и снимают показания прибора;

2. крокодил перецепляют на рабочий ноль, а свободным щупом меряют сопротивление между контактами фаз;

3. крокодил переносят на любую фазную клемму, а щупом меряют последовательно сопротивление на двух оставшихся;

4. крокодилом и щупом измеряют сопротивление между двумя последними фазами.

Во всех случаях стрелка прибора должна указывать на бесконечность — ∞. Меньшее значение будет свидетельствовать о нарушении изоляции, возможности создания короткого замыкания. Придется искать причину и устранять ее.

Только после соблюдения этого условия можно включать автоматический выключатель для подачи напряжения на розетку, которое потребуется проанализировать.

Схемы проверки напряжения на трехфазной розетке 380вольт

Для оценки качества питания воспользуемся вольтметром переменного тока или мультиметром, переключенным в его режим.

Схема проверки напряжения 380 В на розетке

Между всеми фазными контактами мы должны увидеть симметричное напряжение в 380 вольт, а между рабочим, а затем еще и защитным нулем с фазами — 220.

Только в этом случае допускается использовать розетку для питания потребителей. Однако, следует обратить внимание на исправность подключаемых трехфазных приборов. Ведь, они тоже могут быть с дефектами конструкции, приводящими к аварийной ситуации.

Схемы проверки правильности подключения трехфазной вилки к электрическому прибору

До подачи питания на электроприбор его исправность можно оценить замером активной составляющей полного сопротивления на контактах вилки. Простая схема ее подключения призвана помочь понять эти замеры.

Схема подключения трехфазного потребителя к вилке

Активное сопротивление проводов каждой обмотки должно быть одинаковым, равным какому-то определенному числу. Обозначим его индексом R. Это значение мы должны увидеть между контактом рабочего нуля и каждой фазы.

Схема замера сопротивлений на вилке

После этого останется убедиться, что последовательное соединение двух обмоток, замеренное на фазных контактах, составит удвоенную величину — 2R.

Такой простой способ позволит уверенно подключать вилку в розетку.

Заканчивая изложение материала хочется напомнить, что розетка и вилка спроектированы для надежной работы при пропускании или остановке номинального тока только после того, как они соединены. Разрывать их контактами проходящую нагрузку нельзя: они не предназначены для этих целей. Ведь при разъединении цепи возникает искра или электрическая дуга, которую необходимо погасить.

Такая функция возложена на специальную конструкцию силовых контактов автоматического выключателя. Только он рассчитан на отключение токов нагрузки и даже аварийных ситуаций.

Напряжение 380в для розеток

Всем привет! В данной статье хочу наглядно на рисунках показать в какой ситуации в обычных домашних розетках может появиться 380В и более вместо стандартных 220В. По новому ГОСТу даже 400В. Это очень высокое напряжение, от которого выходит из строя вся электронная бытовая техника, горят компрессоры холодильников, моторы и т.д. Мало того, что сама техника перегорает, так она еще может загореться и привести к пожару. Это очень опасно и поэтому про данную аварийную ситуацию нужно знать и нужно знать как от нее защититься.

Вот посмотрите ниже на фото какие напряжения были на разных фазах в одном коттеджном поселке Московской области. На фазе L1 было 391В, на фазе L2 было 319В, на фазе L3 было 426В. Данные устройства имеют некоторую погрешность в измерениях, но я думаю в такой ситуации плюс минус один вольт роли уже не играет. У людей сгорело очень много бытовой техники и теперь они пытаются найти правду и справедливость. А в доме, где стоят данные приборы, даже ничего и не заметили. Как мы видим высокое напряжение в нашей действительности это реальность и поэтому давайте вместе разберемся откуда в розетке может появиться 380В?

Откуда в розетке может появиться 380В

Ниже на рисунке я схематично изобразил дом. Представим, что это типичная многоэтажка. У них обычно в подвале находится вводной электрощит — ВРУ. От подстанции к нему всегда приходит 3-хфазное питание. По стоякам от ВРУ и до последнего этажа поднимаются четыре или пять жил, то есть все три фазы. Если пять жил, то это три фазы, нулевой рабочий и нулевой защитный проводники. Это современная система заземления. Ее применяют сейчас при строительстве новых домов. Если дом старый, то там скорее всего в шахте можно найти только четыре жилы — это три фазы и PEN проводник. Это старая система заземления. На своих рисунках я изобразил пятипроводную систему.

Итак, на каждом этаже присутствуют все три фазы. Но в квартиры заходит однофазное питание. Если на лестничной площадке три квартиры, то одна квартира подключена к фазе L1, вторая к L2 и третья к L3. Это делается, чтобы распределение нагрузки по фазам было более менее равномерным. Получается, что у квартир разные фазы, но общие нулевой рабочий (ноль) и нулевой защитный (заземление) проводники. В разных квартирах жильцы занимаются разными делами и включают разное количество потребителей. Поэтому нагрузка по фазам все равно не равномерная.

Откуда в розетке может появиться 380В

Теперь вспомним какие бывают соединения в электрике и как они влияют на ток и напряжение.

Все домашние потребители подключаются к сети параллельно. То есть к каждой розетке приходит свои фаза и ноль. При таком подключении в каждом потребителе будет одинаковое напряжение. По современному ГОСТу оно должно быть 230В. Поэтому в нормальной ситуации в каждой розетке должно быть 230В. Это правильно и все работает исправно. При параллельном подключении общий ток складывается из токов каждого участка цепи.

Последовательное соединение — это когда от источника питания пришел провод к потребителю на один контакт. Далее со второго контакта провод ушел на следующий потребитель на первый контакт. С его второго контакта — на третий потребитель и т.д. При последовательном соединении во всей цепи ток будет одинаковый у каждого потребителя, но напряжение будет разным. Общее напряжение всей цепи будет складываться из напряжений на каждом потребителе. Если потребители имеют разную мощность, то и напряжение на них будет разное. Последовательно розетки и потребители нельзя подключать. Так они исправно работать не смогут. Их нужно подключать только параллельно.

Ниже на рисунке все это наглядно показано.

Откуда в розетке может появиться 380В

Теперь пару слов о линейном и межфазном напряжении. Между любым фазным и нулевым рабочим проводниками напряжение (линейное) составляет 230В. Напряжение между разными фазами (межфазное) составляет 400В. Ниже также все наглядно показано. Думаю все понятно. Это же так легко)))

Так как в квартиры заходит одна из фаз и ноль, то во всех розетках присутствует 230В.

Откуда в розетке может появиться 380В

Когда все надежно подключено, то все работает в штатном режиме. Вот так «течет» ток в одной квартире. От источника питания к розетке электроны бегут по фазному проводнику. Далее они там стирают, варят, греют, светят и т.д. Поработав, уставшие электроны по нулевому рабочему проводнику возвращаются домой в источник питания. Не знаю успевают ли они там отдохнуть, но они снова по фазному проводнику бегут на работу. И так по кругу до бесконечности прямо как взрослые люди ))) Данный путь на рисунке я выделил красными жирными стрелками.

Откуда в розетке может появиться 380В

Так выглядит другая квартира.

Откуда в розетке может появиться 380В

Так вот, если со временем какой-нибудь контакт подключения проводника в ВРУ ослабевает и потом совсем пропадает, то это означает, что цепь движения тока нарушается. Если отгорит фазный проводник, то пропадет электричество в тех квартирах, которые подключены к данной фазе. Это как бы пол беды и не так страшно. Дома ничего опасного не произойдет и только не будет работать домашняя техника. Потом приедут местные электрики, прикрутят фазу обратно или заменят вставку и все заработает по прежнему. Но на долго ли.

Так откуда же в розетках может появиться 380В? Вот откуда. У всех потребителей один общий нулевой рабочий проводник (ноль). Вот если отгорит он, то подключение всех розеток станет последовательным. Смотрите следующий рисунок. Ноль оборван и по нему нет обратного пути к источнику тока, но есть путь по нулевому рабочему проводнику к другим розеткам, подключенным к другим фазам. В итоге получается, что потребители уже подключены последовательно и между разными фазами. А мы уже знаем, что между разными фазами 400В. Так как каждый потребитель имеет свою мощность, например, телевизор 300Вт, а духовой шкаф 2000Вт, то соответственно на них будет падать напряжение обратно пропорционально их мощности. На рисунке для наглядности я привел значения мощности 500Вт в одной квартире и 3500Вт в другой. Малыш извини, но тебе сегодня не повезло ))) Суммарное напряжение будет 400В, так как потребители подключены между разными фазами. А вот падение напряжения будет у каждого свое. Чем меньше мощность, тем выше будет напряжение и наоборот. Поэтому в квартире, где были подключены потребители суммарной мощностью 3500Вт, напряжение упадет до 50В. В другой квартире, где было включено мало потребителей мощностью 500Вт напряжение подскачет до 350В. А это уже очень опасное напряжение, которое выводит бытовую технику из строя.

Откуда в розетке может появиться 380В

Для большей наглядности описываемой ситуации я убрал лишнее. Вот так должно быть более понятнее. Наверное.

Откуда в розетке может появиться 380В

Вот отсюда в розетке и появляется 380В. Вот вам один из реальных примеров данной ситуации. К сожалению, они случаются довольно часто. Мало того, что люди несут материальный ущерб, так потом еще нужно много сил и энергии, чтобы что-то доказать.

Для защиты от такой ситуации можно использовать разные защитные устройства, например реле напряжения УЗМ-51М, УЗМ-50Ц, РН-106 или расцепители максимального напряжения Legrand POP (артикул 406286), IMSU от Schneider Electric и т.д.

380 Вольт в ваших розетках. И что потом?

380 Вольт в ваших розетках. И что потом?

Наверное, многим известны случаи, когда в обычной домашней электросети внезапно повышается напряжение почти до 380 вольт, отчего выходит из строя большая часть электроприборов. Многие наверняка слышали о таких случаях от знакомых, а некоторые и сами от них пострадали. Из-за того, что большинство людей не понимает причины этого явления, они начинают предполагать, что где-то какой-нибудь электрик случайно перепутал провода и подал на них не то напряжение. А дальше начинается поиск виноватых, который никак не может дать правильный результат без понимания истинной причины неисправности. На самом деле, для того, чтобы в розетках появилось повышенное напряжение, совершенно не обязательно именно в этот момент совершать каких-либо действий и что-либо перепутывать. Истинной причиной такой неисправности, является либо естественный износ электропроводки, либо ее недостаточно качественный монтаж, причем выполненный задолго до возникновения неисправности.

Для того, чтобы понять, как возникает эта неисправность, необходимо сначала изучить, как вообще электроэнергия попадает к потребителю. Как правило, электропроводка, состоящая из двух проводов, по которым поступает напряжение в 220 вольт, существует исключительно на самом последнем участке пути к потребителю. Например на участке после группового щита с автоматами и электросчетчиками. А до этого щита от поставщика электроэнергия передается посредством трехфазной электросети. Именно такая электросеть является самым распространенным способом передачи электроэнергии, а вовсе не двухпроводная сеть с напряжением 220 вольт.

Как устроена трехфазная сеть ? В трехфазной электросети электроэнергия передается по четырем проводам. Три из них называются фазами (например A, B и C), а четвертый — нулевым проводом. Если не вдаваться в малопонятные подробности со сдвигом фаз, то достаточно понимать простой факт -между нулевым проводником и любой из фаз напряжение составляет 220 вольт, а между любыми двумя фазами — 380 вольт.

Подключение потребителей к такой сети происходит очень простым способом — одна квартира подключена в нулевому проводу и фазе A, соседняя квартира — к нулевому проводу и фазе B, еще одна квартира — к нулевому проводу и фазе C. Схема распределения потребителей по фазам может быть различной, но всегда преследует одну цель — как можно равномернее распределить потребителей по трем фазам, по возможности не допуская попадания в одну квартиру более одной фазы. Таким образомбез каких либо трансформаторов или других устройств в каждой квартире имеется два провода, напряжение между которыми составляет 220 вольт. А про напряжение в 380 вольт многие потребители вообще ничего не знают.

Теперь допустим, что на участке от электрощита к поставщику в проводке возникает неисправность — обрывается какой-то провод. Если оборвана какая-либо из фаз, то все просто — в какой-то группе квартир просто не будет напряжения и ничего плохого не случится. Самое интересное начинается, если обрыв происходит в нулевом проводе.

Рассмотрим, что происходит при обрыве нулевого проводника на участке от электрощита до поставщика электроэнергии. В каждой из квартир имеется какое-то количество электроприборов включенных в сеть. Все электроприборы внутри квартиры соединены параллельно друг другу и их можно считать одной общей нагрузкой. Эта общая нагрузка подключена к какой-то из фаз, и нулевому проводу. Т.е. в квартире, подключенной к фазе A имеется нагрузка A, в квартире подключенной к фазе B — нагрузка B, а в квартире подключенной к фазе С — нагрузка С. Все эти нагрузки подключены к нулевому проводнику в щитке, который из-за обрыва в линии не подключен более никуда, и является в этом случае исключительно местом соединения нагрузок между собой. Теперь представим себе, что в квартире Cхозяева предусмотрительно ушли из дома, отключив от сети все электроприборы. В квартире B кто-то работает с маломощным ноутбуком, а в квартире A — кто-то включил мощный электрический чайник.

Теперь получилось, что ноутбук подсоединен к фазе B и нулевому проводу, а чайник — к тому же нулевому проводу и фазе A. Но нулевой провод за щитком оборван, и более никуда не подключен, т.е. только соединяет ноутбук с чайником. Получается, что ноутбук соединен последовательно с чайником и они вместе подключены к двум разным фазам A и B. Но мы знаем, что между фазами A и B напряжение 380 вольт ! Как распределится напряжение между ноутбуком и чайником ?

Если бы мощность чайника была бы равна мощности ноутбука, то напряжение поделилось бы между ними поровну и составило половину от 380 вольт на каждом из них. Но чайник в десятки раз мощнее ноутбука, т.е. один чайник равен двум десяткам параллельно соединенных ноутбуков. А с точки зрения одного ноутбука, чайник — это почти то же самое, что просто кусок провода. Таким образом, напряжение на этих двух приборах поделится обратно пропорционально их мощности — на мощном приборе напряжение будет маленьким, а на маломощном — наоборот большим. В данном случае напряжение на ноутбуке будет в десятки раз больше чем на чайнике, и составит значение, очень близкое к 380 вольтам. Понятно, что в этом случае блок питания почти гарантированно выйдет из строя.

Описанное явление опасно не только потому, что приводит к поломке самих электроприборов, но еще и потому, что может привести к пожару. Например, современные электронные устройства в большом количестве содержат электролитические конденсаторы. При повышении напряжения на таком конденсаторе он взрывается, причем взрыв может сопровождаться разбрызгиванием горючего электролита и искрой, от которой этот электролит вполне может загореться.

Как защититься от подобных неприятностей ? Для этого можно предложить два способа. Первый из них хоть и не всегда сможет защитить ваш дом и ваши электроприборы, но зато не стоит практически ничего — уходя из дома физически отключайте как можно больше электроприборов от электросети. Очень многие современные электронные приборы — телевизоры, компьютеры, принтеры и т.п. не имеют физического выключателя и остаются под напряжением даже в выключенном состоянии. При внезапном повышении напряжения эти электроприборы не только могут выйти из строя, но и стать причиной пожара. И за тот же телевизор или принтер можно быть абсолютно спокойным, если уходя из дома вы своими руками выдернете его шнур из розетки.

Второй способ немного сложнее и дороже, но и более эффективный. Он состоит в установке в вашем электрощите, помимо обычных автоматов и УЗО (УЗО защищает от поражения током, но не защищает от повышения напряжения), специального устройства защиты от повышенного напряжения. Называется этот прибор Реле напряжения RBUZ! Это устройство автоматически отключит напряжение в вашей домашней электросети при его повышении выше 265 вольт или понижении ниже 170 вольт,и автоматически включит его обратно, когда напряжение вернется к нормальной величине.

Откуда в розетке 380в при обрыве нуля — наглядно, доступно, без формул.

откуда появляется 380в в розетке

Наверняка у каждого из вас, хотя бы раз в жизни сгорали бытовые приборы от перенапряжения. При этом многие слышали, что подобное не редко случается из-за обрыва ноля.

Давайте наглядно без формул, векторных диаграмм, смещений нулевых точек и т.п., с точки зрения обывателя попытаемся разобраться, каким же образом напряжение 380в, вместо привычных 220в, может оказаться в ваших розетках.

повышенное напряжение в розетке дома при обрыве нулевого провода

Ведь действительно возникает логичный вопрос, как это так, оборвался или отгорел один из проводов, а напряжение ни то что не пропадает, а становится даже больше.

Понимание этого процесса будет полезно каждому потребителю, дабы потом не возникало вопросов, зачем электрики пытаются «всунуть» в электрощиток, непонятные реле, стоимостью несколько тысяч рублей.

Чтобы доступно разобраться в сути этого явления, давайте вспомним разницу между последовательной и параллельной схемой подключения электроприемников.

последовательная схема подключения электроприемников и потребителей в сеть 220В

При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.

На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.

схема квартирного распределительного щитка однофазный вариант какой лучше

При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.

Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.

Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

последовательная схема подключения электроприборов в сеть 220В

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого.

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

применение схемы последовательного подключения лампочек

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2.

схема последовательного подключения электроприборов и потребителей с разной мощностью

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

голоса
Рейтинг статьи
Читайте так же:
Телефонная розетка скрытой установки подключение
Ссылка на основную публикацию
Adblock
detector