Aviatreid.ru

Прокат металла "Авиатрейд"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пример расчета тока трехфазного к. з. в сети 0,4 кВ

Пример расчета тока трехфазного к.з. в сети 0,4 кВ

В данном примере будет рассматриваться расчет тока трехфазного короткого замыкания в сети 0,4 кВ для схемы представленной на рис.1.

Рис.1 - Однолинейная схема питания и расчетная схема замещения

1. Ток короткого замыкания на зажимах ВН трансформатора 6/0,4 кВ составляет — 11 кА.

2. Питающий трансформатор типа ТМ — 400, основные технические характеристики принимаются по тех. информации на трансформатор:

  • номинальная мощностью Sн.т — 400 кВА;
  • номинальное напряжение обмотки ВН Uн.т.ВН – 6 кВ;
  • номинальное напряжение обмотки НН Uн.т.НН – 0,4 кВ;
  • напряжение КЗ тр-ра Uк – 4,5%;
  • мощность потерь КЗ в трансформаторе Рк – 5,5 кВт;
  • группа соединений обмоток по ГОСТ 11677-75 – Y/Yн-0;

3. Трансформатор соединен со сборкой 400 В, алюминиевыми шинами типа АД31Т по ГОСТ 15176-89 сечением 50х5 мм. Шины расположены в одной плоскости — вертикально, расстояние между ними 200 мм. Общая длина шин от выводов трансформатора до вводного автомата QF1 составляет 15 м.

4. На стороне 0,4 кВ установлен вводной автомат типа XS1250CE1000 на 1000 А (фирмы SOCOMEC), на отходящих линиях установлены автоматические выключатели типа E250SCF200 на 200 А (фирмы SOCOMEC) и трансформаторы тока типа ТСА 22 200/5 с классом точности 1 (фирмы SOCOMEC).

5. Кабельная линия выполнена алюминиевым кабелем марки АВВГнг сечением 3х70+1х35.

Для того, чтобы рассчитать токи КЗ, мы сначала должны составить схему замещения, которая состоит из всех сопротивлений цепи КЗ, после этого, определяем все сопротивления входящие в цепь КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражаются в миллиомах (мОм).

1. Определение сопротивлений питающей энергосистемы

В практических расчетах для упрощения расчетов токов к.з. учитывается только индуктивное сопротивление энергосистемы, которое равно полному. Активное сопротивление не учитывается, данные упрощения на точность расчетов – не влияют!

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]

2. Определение сопротивлений трансформатора 6/0,4 кВ

2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]:

2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]

2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]:

2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]

2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]:

2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]

Для упрощения расчетов можно воспользоваться таблицей 2.4 [Л1. с. 28], как видно из результатов расчетов, активные и индуктивные сопротивления совпадают со значениями таблицы 2.4.

Таблица 2.4 - Значения активных и индуктивных сопротивлений трансформаторов

3. Определение сопротивлений шин

3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1. с. 29]:

3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1. с. 29]

3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3:

3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3

3.2 По таблице 2.6 определяем активное погонное сопротивление для алюминиевой шины сечением 50х5, где rуд. = 0,142 мОм/м.

Для упрощения расчетов, значения сопротивлений шин и шинопроводов, можно применять из таблицы 2.6 и 2.7 [Л1. с. 31].

Таблицы 2.6, 2.7 - Активное и индуктивное удельные сопротивления шин и шинопроводов

3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ:

Читайте так же:
Схема электронного выключателя света

3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ

4. Определение сопротивлений кабеля

4.1 Определяем активное и индуктивное сопротивление кабелей по выражению 2-11 [Л1. с. 29]:

4.1 Определяем активное и индуктивного сопротивления кабелей по выражению 2-11 [Л1. с. 29]

Таблицы 11 ГОСТ 28249-93 - Параметры кабеля с алюминиевыми жилами в непроводящей оболочке

5. Определение сопротивлений трансформаторов тока

Значения активных и индуктивных сопротивлений обмоток для одного трансформатора тока типа ТСА 22 200/5 с классом точности 1, определяем по приложению 5 таблица 20 ГОСТ 28249-93, соответственно rта = 0,67 мОм, хта = 0,42 мОм.

Таблица 20 - Значения активных и индуктивных сопротивлений трансформаторов тока ГОСТ 28249-93

Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.

Согласно [Л1. с. 32] для упрощения расчетов, сопротивления трансформаторов тока не учитывают ввиду почти незаметного влияния на токи КЗ.

6. Определение сопротивлений автоматических выключателей

Определяем активное сопротивление контактов по приложению 4 таблица 19 ГОСТ 28249-93:

  • для рубильника на ток 1000 А – rав1 = 0,12 мОм;
  • для автоматического выключателя на ток 200 А — rав2 = 0,60 мОм.

Таблица 19 - Значения сопротивлений разъемных контактов коммутационных аппаратов напряжением до 1 кВ ГОСТ 28249-93

7. Определение сопротивлений контактных соединений кабелей и шинопроводов

Для упрощения расчетов, сопротивления контактных соединений кабелей и шинопроводов, я пренебрегаю, ввиду почти незаметного влияния на токи КЗ.

Если же вы будете использовать в своем расчете ТКЗ значения сопротивления контактных соединений кабелей и шинопроводов, то они принимаются по приложению 4 таблицы 17,18 ГОСТ 28249-93.

При приближенном учете сопротивлений контактов принимают:

  • rк = 0,1 мОм — для контактных соединений кабелей;
  • rк = 0,01 мОм — для шинопроводов.

Таблицы 17,18 - Значения сопротивления контактных соединений кабелей и шинопроводов ГОСТ 28249-93

8. Определение тока трехфазного к.з. в конце кабельной линии

8.1 Определяем ток трехфазного к.з. в конце кабельной линии:

8.1 Определяем ток трехфазного к.з. в конце кабельной линии

9. Список литературы

1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
2. Голубев М.Л. Расчет токов короткого замыкания в электросетях 0,4 — 35 кВ. 2-e изд. 1980 г.
3. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

Большая Энциклопедия Нефти и Газа

Расчет токов короткого замыкания в системах электроснабжения напряжением до 1000 В требуется для проверки работы электроаппаратов и проводников в режиме сверхтоков, а также, для проверки автоматического отключения линий в сетях до 1000 В с глу-хозаземленной нейтралью при возникновении замыканий на корпус.  [2]

Расчеты токов коротких замыканий выполнены для простых электрических сетей, примыкающих к отдельным узлам энергосистемы. Для таких сетей вычисления выполняются аналитическим методом, ибо применение электронных цифровых вычислительных машин или электрических моделей нецелесообразно.  [3]

Расчет тока короткого замыкания для указанного случая требует учета активного сопротивления элементов расчетной цепи ввиду их значительной величины. Для упрощения расчета допускается не учитывать сопротивлений токовых катушек автоматов, ТТ и др. Поэтому в расчетную схему вводятся только полные сопротивления питающего трансформатора и кабеля.  [4]

Расчет токов короткого замыкания во вторичных цепях ТН выполняется для выбора предохранителей и автоматов.  [5]

Расчет токов короткого замыкания для всех важнейших узлов системы, в которых установлены выключатели, предназначенные для отключения этих токов, представляет собой весьма трудоемкую задачу. В особенности это относится к современным электроэнергетическим системам, сети которых отличаются большой протяженностью и разветвленностью, наличием значительного числа связей между отдельными частями, кольцевых линий и сеток. Аналитические расчеты токов короткого замыкания целесообразно заменить измерениями в эквивалентной цепи, отображающей в сильно уменьшенном масштабе действительную систему. Такая модель содержит столько сопротивлений, индуктивных катушек и, возможно, конденсаторов, сколько отдельных линий и аппаратов имеется в исследуемой системе.  [6]

Читайте так же:
Сила тока для кабеля зарядки

Расчеты токов короткого замыкания выполняются в объеме, необходимом для выбора принципов, ориентировочного расчета уставок и проверки чувствительности защит с составлением схемы замещения без учета активных составляющих сопротивлений и для начального момента времени.  [7]

Расчет токов короткого замыкания необходим для правильного выбора и отстройки защитной аппаратуры. Ток короткого замыкания возникает при соединении токоведущих частей фаз между собой или с заземленным корпусом электроприемника в схемах с глухозаземленной нейтралью и нулевым проводом.  [8]

Расчет токов короткого замыкания в распределительных сетях до 1000 В / / Пром.  [9]

Расчет токов короткого замыкания ведется обычно по кривым изменения периодической составляющей тока короткого замыкания. Кривые построены на основании известных параметров отечественных генераторов для случаев работы их с автоматическими регуляторами напряжения и без них.  [10]

Расчет токов короткого замыкания при выборе токоведущих частей и аппаратов крупных электротехнических установок приходится производить и на стороне низшего напряжения трансформатора. В этом случае пользуются изложенной ранее методикой, но обязательно учитывают активное сопротивление трансформатора, шин, кабелей, катушек автоматов и других элементов схемы.  [11]

Расчет токов короткого замыкания и в этом случае основывается на принципе постоянства потокосцепления.  [12]

Расчет токов короткого замыкания производится для проверки выбранных оборудования и токоведущих частей на устойчивость к токам короткого замыкания, а также для определения уставок тока трогания релейной защиты.  [13]

Расчет токов короткого замыкания необходимо производить для трехфазного и двухфазного короткого замыкания, так как значения, токов короткого замыкания определяются величиной расчетного относительного сопротивления схемы х расч, приведенного к месту короткого замыкания.  [14]

Для расчета тока короткого замыкания на шинах 3 — 6 кв собственных нужд составляется расчетная схема, на которой указываются система, генераторы станции, повысительные трансформаторы и реактор или трансформатор собственных нужд. На основании расчетной схемы составляется схема замещения, в которой все элементы расчетной схемы заменяются соответствующими индуктивными сопротивлениями, которыми они обладают. Эти сопротивления выражаются в омах, что значительно упрощает вычисление тока короткого замыкания.  [15]

Что такое ток короткого замыкания?

Ток короткого замыкания (short-circuit current) — это сверхток в электрической цепи при коротком замыкании (определение согласно ГОСТ 30331.1-2013). В некоторой нормативной документации используется сокращение «ток КЗ».

Харечко Ю.В. конкретизировал понятие «ток короткого замыкания» следующим образом [2]:

« Ток короткого замыкания представляет собой одну из разновидностей сверхтока. В отличие от тока перегрузки ток короткого замыкания обычно возникает в условиях повреждений, когда повреждается изоляция каких-либо проводящих частей, находящихся под разными электрическими потенциалами, и между ними возникает электрический контакт с пренебрежимо малым полным сопротивлением. В условиях повреждений также возможно замыкание частей, находящихся под напряжением, на открытые и сторонние проводящие части, которые в электроустановках зданий с типами заземления системы TN-S, TN-C-S и TN-C имеют электрическую связь с заземленной нейтралью источника питания. »

« Токи замыкания на землю в системах TN, протекающие по фазным проводникам и защитным или PEN-проводникам, будут сопоставимы с токами однофазных коротких замыканий, которые протекают по фазным проводникам и нейтральным или PEN-проводникам. »

Ток короткого замыкания может также возникнуть в нормальных условиях, когда отсутствуют повреждения, из-за ошибочного соединения проводящих частей с разными электрическими потенциалами, допущенного при монтаже и эксплуатации электроустановки здания. Если ошибочно выполнено электрическое соединение, например, фазного и нейтрального проводников какой-то электрической цепи, то при ее включении по обоим проводникам будет протекать ток однофазного короткого замыкания.

Читайте так же:
Подсветка розеток своими руками

Особенности.

В своей книге [2] Харечко Ю.В. также отразил некоторые особенности, которые касаются понятия «ток короткого замыкания»:

« Величина тока короткого замыкания может многократно (на несколько порядков) превышать значение тока перегрузки и тем более значение номинального тока. Даже кратковременное его воздействие на какие-либо элементы электроустановки зданий может вызвать их механическое повреждение, перегрев, возгорание и, как следствие, явиться причиной пожара в здании. Поэтому электрооборудование в электроустановках зданий, прежде всего – проводники электрических цепей, должно быть надежно защищено от токов короткого замыкания с помощью устройств защиты от сверхтока – автоматических выключателей и плавких предохранителей. »

« Токи короткого замыкания определяют при проектировании электроустановок зданий и учитывают при выборе характеристик электрооборудования. Максимальные токи короткого замыкания всегда соотносят с предельными сверхтоками, которые способны отключить коммутационные устройства и устройства защиты от сверхтока, а также могут пропустить через себя некоторые виды электрооборудования. Минимальные токи короткого замыкания используют для проверки способности устройств защиты от сверхтока выполнить их отключение в течение нормируемого или предпочтительного промежутка времени. »

О методике расчета токов короткого замыкания.

Методики расчета токов короткого замыкания изложены в ГОСТ 28249-93, в стандартах и технических отчетах комплекса МЭК 60909. ГОСТ 28249-93 распространяется на трехфазные электроустановки переменного тока напряжением до 1 кВ, присоединенные к энергосистеме или к автономным источникам электрической энергии. Стандарт устанавливает общую методику расчета токов симметричных и несимметричных коротких замыканий в начальный и произвольный моменты времени с учетом параметров синхронных и асинхронных машин, трансформаторов, реакторов, кабельных и воздушных линий электропередачи, а также шинопроводов.

Комплекс МЭК 60909 применяют для расчета токов короткого замыкания в низковольтных и высоковольтных электроустановках переменного тока частотой 50 или 60 Гц. Однако, как указано в стандарте МЭК 60909-0, электрические системы с напряжением 550 кВ и более, имеющие протяженные линии электропередачи, требуют специального рассмотрения.

Формула тока короткого замыкания кабеля

Наш инструмент расширенного поиска позволяет найти продукцию, в точности соответствующую вашим требованиям.

Выберите один или несколько фильтров Закрыть [ X ]
Выберите один или несколько фильтров Закрыть [ X ]

Профессионалы в сфере проектирования и изготовления кабельных вводов, кабельных скоб и аксессуаров

Позвонить нам +44 191 265 7411

Нужна помощь? Свяжитесь с нашими специалистами по +44 191 265 7411

Ниже представлено описание принципа расчета в компании CMP Products пиковых значений тока короткого замыкания (кА) для конкретного назначения и условий монтажа.

Компания CMP Products провела более 300 испытаний на короткое замыкание. Тем не менее, провести испытание для каждого значения тока отказа, кабельной скобы, размера и типа кабеля, а также конфигурации расположения крепежных отверстий не представляется возможным.

Читайте так же:
Настенный выключатель света схема

Компания CMP Products непрерывно разрабатывает программное обеспечение с целью воспроизведения данных испытаний и обладает возможностями провести испытания кабельных скоб, кабелей, кабельных лотков и кабельных лестниц, использование которых планируется в проекте при нестандартных условиях эксплуатации.

Компания CMP также обладает опытом, позволяющим точно рассчитать пиковые значения тока короткого замыкания (кА) на основе данных дорогостоящих испытаний, проверенных в универсальной программе для испытаний.

Испытания

Начиная с испытания на короткое замыкание при расстоянии между центрами крепежных отверстий скоб в 300 мм, устанавливается максимальное безопасное пиковое значение тока короткого замыкания в кА.

В примере ниже описано успешное прохождение испытаний кабельной скобы согласно требованиям стандарта IEC 61914:2009 при токе 190 кА, диаметре кабеля 36 мм и расстоянии между центрами крепежных отверстий 300 мм.

Расчет максимального показателя силы, воздействующей на испытываемую кабельную скобу

Для расчета силы, воздействие которой может выдержать кабельная скоба в процессе испытания, используются результаты испытаний, проведенных по стандарту IEC 61914:2009, из таблицы:

Ft — максимальная сила, действующая на кабель (Н/м)
ip — максимальное значение тока короткого замыкания (кА)
S — расстояние между осевыми линиями двух соседних проводников, например, в трехлистной компоновке оно соответствует наружному диаметру кабеля (м)

В данном примере величина Ft равна 170 472,22 Н/м

Ft — это величина силы в Ньютонах на метр, требуемая для расчета максимального значения силы, воздействие которой сможет выдерживать кабельная скоба, и которое должно быть умножено на расстояние между центрами крепежных отверстий кабельных скоб:

Максимальное значение силы, действующей на кабельную скобу = Ft (Н/м) x расстояние между центрами крепежных отверстий (м)

В данном примере максимальная сила, действующая на кабельную скобу (с учетом расстояния между центрами крепежных отверстий, равного 0,3 м), = 51 141,67 Н

Расчет показателя Ft для новых условий

После расчет максимальной силы, действующей на кабельную скобу, формула будет преобразована с целью расчета максимального КЗ при иных значениях расстояния между центрами крепежных отверстий, диаметров кабелей и пр.

Сперва необходимо рассчитать значение ip, если расстояние между центрами крепежных отверстий увеличилось до 600 мм, затем рассчитать значение Ft:

Ft — максимальная сила, действующая на кабель (Н/м)
ip — максимальное значение тока короткого замыкания (кА)
S — расстояние между осевыми линиями двух соседних проводников, т. е. наружный диаметр кабеля (м)

В данном примере значение Ft = 85 236,11 (Н/м)

После расчета значения Ft для данных условий эксплуатации следует рассчитать значение ip.

Расчет показателя i для новых условий

Ft — максимальная сила, действующая на кабель (Н/м)
ip— максимальное значение тока короткого замыкания (кА)
S — расстояние между осевыми линиями двух соседних проводников, т. е. наружный диаметр кабеля (м)

Значение ip в данном примере = 134,35 кА

Опыт показывает, что эти значения всегда ниже тех, которых удается достичь в условиях физического испытания. Это подтверждает учет показателя безопасности в расчетах стандарта IEC 61914:2009. И это хорошо, поскольку означает, что рассчитанные значения всегда указаны с запасом.

Читайте так же:
Схема работы выключателя освещения

Это также значит, что значение Ft (максимальная сила, действующая на каждую кабельную скобу), полученное по результатам испытаний, следует использовать только с учетом расстояний между центрами крепежных отверстий, которые в действительности меньше тех, что были использованы в процессе испытания, в качестве величины для расчета значений ip. Не рекомендуется проводить расчет в обратном порядке, поскольку это будет противоречить показателю безопасности, использованному в стандартной ситуации, что приведет к получению нереалистичных значений ip.

Пример:

Кабель и кабельная скоба успешно прошли испытания по стандарту 61914:2009 при значении 150 кА и расстоянии между центрами крепежных отверстий 600 мм (рассчитанное значение ip составило 134,35 кА, что, по сути, превышает максимально возможное на

С учетом полученного нового значения ip рассчитываем значение Ft:

Ft — максимальная сила, действующая на кабель (Н/м)
ip — максимальное значение тока короткого замыкания (кА)
S — расстояние между осевыми линиями двух соседних проводников, т. е. наружный диаметр кабеля (м)

В данном примере величина Ft = 106 250 Н/м

В данном примере максимальная сила, действующая на кабельную скобу (с учетом расстояния между центрами крепежных отверстий, равного 0,6 м) = 63 750 Н

Если данное максимальное значение силы, действующей на каждую кабельную скобу, использовалось в качестве основы для расчета значения ip с учетом расстояния между центрами крепежных отверстий, равного 0,3 м, тогда значение Ft должно равняться 212 500 Н/м

В этом случае значение ip будет составлять 212,13 кА — ЭТО ЧРЕЗМЕРНО ВЫСОКОЕ ЗНАЧЕНИЕ! При условии, что расстояние между центрами крепежных отверстий составляло 300 мм, было достигнуто значение всего 190 кА в условиях физического испытания. Это указывало на то, что кабельная скоба уже выдерживает близкую к предельной нагрузку.

Уточняющий расчет:

При расчете величины ip используйте только величину Ft (максимальная сила, действующая на каждую кабельную скобу), полученную по результатам испытаний при коротких расстояниях между центрами крепежных отверстий, а не при тех расстояниях, которые будут использоваться в реальных условиях. Проводить расчеты в обратном порядке опасно, поскольку это будет противоречить учтенному в стандартных расчетах показателю безопасности, что приведет к получению нереалистичных значений ip.

С целью максимально точного расчета и наибольшей безопасности конструкции CMP рекомендует использовать данные, полученные в результате испытаний CMP кабельных скоб, закрепленных на максимально близком (и наименьшем) расстоянии до целевых центров крепежных отверстий для расчета значения ip, например:

Если скобы необходимо крепить на расстоянии 500 мм, в качестве основного для расчета значения ip используйте показатель силы, рассчитанный для расстояния между центрами крепежных отверстий в 300 мм, полученный в результате испытания CMP.

Если скобы необходимо крепить на расстоянии 900 мм, в качестве основного для расчета значения ip используйте показатель силы, рассчитанный для расстояния между центрами крепежных отверстий в 600 мм, полученный в результате испытания CMP.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector