Aviatreid.ru

Прокат металла "Авиатрейд"
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что все-таки бьёт: ток или напряжение

Что все-таки бьёт: ток или напряжение?

В раннем возрасте многие из нас убедились на собственном опыте или узнали из рассказов очевидцев о том, что, если включить утюг в розетку и попытаться разрезать питающий шнур, обязательно испытаешь на себе болезненный удар. Так воздействует на организм электрический ток. В школе над розетками пишут: «220 В, опасно, убьёт!». На подстанциях, в трансформаторных будках и в других высоковольтных установках вывешивают предостерегающие таблички: «Опасно для жизни, высокое напряжение!». Так что же именно представляет опасность для человека и почему? Что бьёт: ток или напряжение? Для начала разберемся в этих понятиях.

Условия возникновения напряжения

Любое вещество состоит из атомов, имеющих положительное ядро и отрицательно заряженные электроны.

Если, под воздействием внешних сил, из атомов отнять некоторое количество электронов, то образовавшееся положительное поле будет стремиться вернуть на их место новые отрицательные частицы.

Если электроны не отнимать, а добавлять, то поле будет иметь отрицательный заряд. Так создаётся положительный и отрицательный потенциалы. При взаимодействии между ними возникает сила притяжения. Чем больше разность потенциалов, тем более сильное поле и высокое напряжение образуется.

Определение напряжения

Как возникает ток

Если при помощи проводника соединить потенциалы противоположных зарядов, то возникнет направленное движение заряженных частиц так называемый электрический ток, стремящийся ликвидировать разницу потенциалов.

Формула силы тока

Именно направленное движение заряженных частиц заставляет наши электроприборы совершать полезное действие: светить, стирать, греть, сверлить и так далее. Чем больше разность потенциалов, тем выше сила тока. Если цепь разомкнуть, ток течь не будет, каким высоким не было бы напряжение.

Воздействие на организм

Тело человека, являясь проводником, может замкнуть электрическую цепь. Тогда через организм потечет ток, сила которого определяется по формуле:

  • U – величина напряжения, приложенного к человеку;
  • R – сопротивление тела.

В этот момент и происходит поражение организма.

Воздействие на человека переменного электрического тока

Из таблицы видно, какой ток считается опасным для человека:

  • 15 мА, неотпускающая величина, самостоятельное освобождение невозможно;
  • 50 мА приводит к фибрилляции сердца, остановке дыхания, смерти;
  • 200 мА вызывает сильные ожоги, несовместимые с жизнью.

Удар происходит при напряжении до 1000 Вольт. Свыше данной величины поражение имеет вид ожогов.

Даже без непосредственного прикосновения к оборудованию, находящемуся под высоким напряжением, человек может получить смертельное поражение. Так, при пребывании в опасной близости к высоковольтной установке, между телом и проводящими частями возникает электрическая дуга, сопровождающаяся:

  • опасной для зрения яркой вспышкой;
  • мгновенным разогревом воздуха до 10 000-15 000 градусов Цельсия;
  • расплавлением и испарением металлов, образованием аэрозолей.

Последствия дугового разряда вызывают ожоговое поражение человека, несовместимое с жизнью.

Для срабатывания защитной автоматики требуется мизерное время. Но, при возникновении дуги, выделяется огромное количество энергии, которое и убивает человека за столь короткий срок.

Факторы, влияющие на степень поражения

Удар постоянного тока опасен. Но от его воздействия можно освободиться без помощи посторонних при значениях от 20 до 25 мА.

Опаснее воздействие на организм переменного тока с частотой 50 – 500 Гц. Человек может самостоятельно освободиться от его влияния только при очень низких величинах, находящихся в пределах от 9 до 10 мА.

Какая сила тока в цепи, зависит от напряжения в этой цепи и сопротивления всех её элементов, включая сопротивление тела человека. Сухая кожа обладает более высоким сопротивлением, составляющим примерно 100 000 Ом. Влажная — всего около 1000 Ом. Сопротивление внутренних органов находится в пределах 500-1000 Ом.

Если приложенное к телу напряжение увеличивается, сопротивление организма непропорционально уменьшается. То же происходит и при увеличении длительности воздействия электричества, а так же при плохом физическом и психическом состоянии человека.

Кривые зависимости: сопротивления тела человека от напряжения (1); тока, протекающего через него, от напряжения (2)

Из графика видно, что, если напряжение увеличивается от 0 до 140 Вольт, сопротивление тела падает от 10 000 до 800 Ом. Эту нелинейную зависимость отражает первая кривая. По второй кривой видно, что ток, проходящий через организм человека, при повышении напряжения, возрастает.

Читайте так же:
Светодиоды для электрических выключателей

Насколько тяжелым будет поражение электричеством, зависит от времени его воздействия на организм. Если влияние продолжается несколько секунд, сопротивление тела уменьшается, соответственно ток возрастает, что приводит к тяжелым последствиям. Если время воздействия менее десятой доли секунды, то вероятность возникновения фибрилляции сердца сокращается, а вероятность сохранения жизни увеличивается.

Расчетные допустимые параметры электрического тока

Из таблицы следует, что, для благоприятного исхода, длительность воздействия 65 мА при расчетных 65 В не должны превышать 1 секунды.

Повторюсь, что в таблице расчетных токов при разных напряжениях сопротивления тела принято, как 1000 Ом, в реальности предсказать величину действующего тока невозможно, так как сопротивление тела зависит от ряда факторов.

Механизм воздействия электричества на организм человека сложен. Случалось, когда в высоковольтных установках кратковременный удар в несколько ампер не приводил к смерти. Тогда как напряжение 12-36 В и ток в несколько миллиампер были смертельными для человека. Причина – поражение, вызванное прикосновением к проводникам наиболее уязвимой части тела: шеи, щеки, плеча, тыльной стороны ладони.

Заключение

Так что же убивает: ток или напряжение?

Так как электрический ток представляет собой упорядоченное движение заряженных частиц, а напряжение является одной из характеристик электрического поля, под воздействием которого происходит это движение, то можно считать, что напряжение первично.

Но убивает электрический ток, потому что именно он протекает через тело человека, но он не сможет протекать через тело, если напряжение слишком низкое.

Получается каламбур – убивает ток, но без напряжения ток не будет протекать. Будьте аккуратны, не проверяйте правдивость надписи «высокое напряжение». И тогда вам не страшен никакой удар, в том числе электрический.

Также советуем посмотреть видео, где автор наглядно иллюстрирует тему этой статьи:

Что мешает светодиоду светить ярче

Российский математический физик из Института вычислительной математики и математической геофизики СО РАН совместно с коллегами из Германии исследовал свойства светодиодов на основе нитрида галлия и построил математическую модель, объясняющую, почему лишь малая часть затраченной электрической энергии переходит в световую. В будущем это поможет создать светодиоды с более высоким КПД. Исследования поддержаны грантом Российского научного фонда (РНФ). Результаты опубликованы в Journal of Physics D: Applied Physics, кратко о них рассказывается в пресс-релизе РНФ.

«Данная работа поможет улучшить эффективность светодиодов из нитрида галлия, а также должна послужить толчком к более детальному экспериментальному поиску материалов для светодиодов с более высокой квантовой эффективностью, то есть высокой светоотдачей», – комментирует ведущий автор работы Карл Сабельфельд, доктор физико-математических наук, главный научный сотрудник Института вычислительной математики и математической геофизики СО РАН.

Светодиод – это прибор на основе полупроводника, превращающий электрический ток в световое излучение. Полупроводники – вещества, которые по своим свойствам находятся между проводниками и материалами, неспособными проводить электричество. Их проводимость меняется в зависимости от температуры, излучений и других внешних условий. Работа полупроводников основана на переходе электронов на «вакантные места», которые называются дырками. Поскольку дырки заряжены положительно (им не хватает электронов, заряженного отрицательно), они перемещаются вслед за электронами, что также называется перемещением заряда.

Начиная с 1990 года светодиоды часто делают из нитрида галлия (GaN). Это кристаллическое вещество – перспективный материал для изготовления других полупроводниковых приборов, так как нитрид галлия устойчив к ионизирующему излучению. Поэтому из GaN можно делать не только светодиоды, но и солнечные батареи для космических аппаратов. Эффективность уже первых светодиодов на основе нитрида галлия была сравнительно велика (4%), хотя плотность «ловушек», из-за которых энергия может теряться, у нитрида галлия намного больше, чем у других полупроводников с таким же КПД.

Читайте так же:
Led светодиоды ток потребления

Полупроводник из GaN, как и любой кристалл, имеет дислокации – линии, где нарушена регулярность кристаллической решетки (ещё их называют несовершенствами решетки, так как атомы в случае дислокаций оказываются несимметрично сдвинуты). Дислокации – это «ловушки», захватывающими экситоны (пары из электрона и дырки). Пойманные «ловушками» экситоны уже не могут излучать энергию в виде света, и светодиод светит слабее, чем мог бы. Поэтому дислокации и другие возможные дефекты мешают создать светодиоды, в которых потери энергии не происходит.

Моделирование процессов диффузии и захвата экситонов проникающими дислокациями. Источник: Карл Сабельфельд

«Однако строгой физической теории о том, как происходит взаимодействие экситонов с дислокациями, не существует, и проблема еще усложняется тем, что методы физических измерений таких взаимодействий довольно сложны и требуют математической поддержки и компьютерного моделирования», – поясняет Карл Сабельфельд.

Наконец такая теория была создана, и помогли в этом методы измерения попадания экситонов в их «ловушки». Чтобы засечь сигнал от взаимодействия экситонов и «ловушек», экспериментаторы используют несколько методов: катодолюминесценцию, основанную на свечении вещества, которое облучили потоком быстрых электронов, и измерение тока, вызванного воздействием на нитрид галлия пучка электронов.

Физики провели сложнейшие, по их словам, расчеты и впервые нашли точное решение задачи об интенсивности катодолюминесценции и тока, вызванного действием электронного пучка. Также они впервые построили модель взаимодействия экситонов и дислокаций, создав строгую теорию, математически объясняющую экспериментальные данные. Новые модели позволяют гораздо лучше понять, как и почему экситоны попадают в «ловушки» и что в будущем поможет повысить КПД светодиодов.

Исследование выполнено совместно с учеными из Института твердотельной электроники им. П. Друде (Берлин).

Как светят лампочки

Все современные лампы можно поделить на три типа в зависимости от того, каким светом они светят: излучение нагретым телом, свечение ионизированного газа под током и светодиоды.

Лампа накаливания

Свет от лампочки накаливания желтоватый. Чтобы получить белый свет, близкий к дневному, необходимо разогреть нить до температуры солнца 5500 °С, а это сделать невозможно — нить просто расплавится.

Лампа накаливания устроена просто: по вольфрамовой нити идет ток и нагревает ее до большой температуры, в результате чего она начинает светиться.

Из-за простоты устройства это до сих пор самый распространенный способ освещения. Но у лампы накаливания есть один очень серьезный недостаток: высокое энергопотребление. КПД лампы около 2%, то есть 98% энергии уходит в тепло. Хороший обогреватель, но плохой источник света.

Чтобы увеличить КПД лампы накаливания, в колбу под давлением закачивают пары брома или йода, который позволяет увеличить температуру нити. Такие лампы называются галогенными. Они меньше по размеру и имеют большую яркость и срок работы, меньшее энергопотребление.

Но у галогенной лампы тоже есть большой недостаток: она пожароопасна из за того, что очень сильно греется. Поэтому, например, ее нельзя трогать руками: отпечатки пальцев начинают сгорать из-за очень высокой температуры, а это портит поверхность колбы и она может треснуть. Галогенные лампы чаще всего используются в фарах автомобилей.

Лампа дневного света

  • — Гелий: синий
  • — Неон: красно-оранжевый
  • — Аргон: сиреневый
  • — Криптон: сине-белый
  • — Пары ртути: голубовато-зелёный

Стеклянная трубка заполнена инертным газом и парами ртути. На концах электроды, на которые подается электрический ток. Ток проходит через газ. Электроны бегут по газу и сталкиваются с атомами ртути, выбивают электроны в атомах ртути с их привычной орбиты на более высокую. Сразу после столкновения электроны прыгают обратно на свою привычную орбиту, при этом возвращают полученную от тока энергию в виде света.

В лампах дневного света газ вырабатывает ультрафиолетовый свет, невидимый глазу. Но внутренние стенки колбы у таких ламп покрыты люминофором, веществом, испускающий видимый свет, когда на него попадает ультрафиолетовый.

Читайте так же:
Проверка сечения кабеля по токам кз

Запустить такую лампу непросто, для этого есть специальное устройство — стартер. Чтобы ток пошел по газу, его надо ионизировать, то есть отделить электроны от атомов. Для этого оба электрода нагревают, с них испаряются электроны, сталкиваются с атомами газа и выбивают из них электроны. После этого резким скачком напряжения между катодами запускается электрическая дуга, по которой по газу идет ток. Лампа не всегда с первого раза загорается, именно поэтому она иногда несколько раз моргает, прежде чем загореться.

Лампы дневного света гораздо экономнее ламп накаливания и качество света у них лучше. Но из-за сложности их устройства они гораздо меньше распространены. Сейчас научились делать лампы дневного света, совместимые со стандартными цоколями, и существенно удешевили производство. Учитывая большой срок службы и низкое энергопотребление, причин не пользоваться такими лампами не осталось.

Светодиоды

Светодиод состоит из двух полупроводников. У одного из них избыток электронов, а у другого наоборот — недостаток. Когда ток идет по такому диоду, избыточные электроны с первого полупроводника падают в «дырки» от недостающих электронов во втором. Во время этого перехода высвобождается энергия в виде света.

Долгое время светодиоды использовались только как индикаторы в электрических устройствах, поскольку светили они очень тускло. Но с появлением сверхъярких светодиодов ситуация изменилась. Теперь они стоят в светофорах, автомобильных фарах, фонариках, рекламных экранах и в подсветке мониторов.

Светодиоды потребляют немыслимо мало энергии, при этом они очень яркие и долговечные. Единственный недостаток — сравнительно высокая цена, но и она падает за счет широкого распространения.

Невидимая война

Многие страны ведут войну с лампами накаливания, законодательно ограничивая их производство и продажу. Это стремление можно понять: если заменить лампы накаливания, на более экономичные лампы дневного света и светодиоды, то человечество сэкономит огромное количество энергии.

С 1 января и в России вступает запрет на продажу ламп накаливания мощностью 100 и более ватт, в 2013 и 2014 лимит опустится до 75 и 25 ватт. Так что запомните их, пока они еще живы: будете внукам рассказывать, как вы читали журналы под лампочкой Ильича.

Перечислить вещества которые проводят электрический ток

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью. Исходя из всего выше сказанного, все материалы поделились на три группы:

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Читайте так же:
Светодиодная рамка для выключателя

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Найден металл, который пропускает электрический ток без производства тепла.

Знакомство с явлением

Соединим с источником тока последовательно лампу и электролитическую ванну с дистиллированной водой, в которую опущены угольные электроды. Химически чистая вода почти не проводит ток.

Если же в воде растворить соль (например CuSO4, CuCl2), то лампочка загорится, а на катоде из раствора выделится медь.

Электрометр — усовершенствованный электроскоп

Усовершенствованием электроскопа в XVIII веке занимался великий русский ученый Михаил Васильевич Ломоносов. Улучшенная версия была названа электрометром.

Рис. 2. Электрометр

Принципиально конструкция осталась такой же. Верхняя часть передающего заряд прутка была снабжена объемным шаром, чтобы можно было размещать больше зарядов. В нижней части прутка пластинки были заменены на легкую металлическую стрелочку, по углу отклонения которой можно оценить величину электрического заряда.

Читайте так же:
Toshiba 40hl933rk уменьшить ток подсветки

В целом можно сказать, что электрометр — это электроскоп с измерительной шкалой.

Какие вещества проводят электрический ток

Из физики известно, что электрический ток – это направленное движение электрически заряженных частиц. Разные вещества проводят электрический ток по-разному. По способности передавать электрические заряды вещества делятся на ПРОВОДНИКИ и НЕПРОВОДНИКИ электричества.

Проводниками называют тела, через которые электрические заряды могут проходить от заряженного тела к незаряженному, в проводниках имеется очень много свободных заряженных частиц. Хорошие проводники электричества – это металлы, почва, вода с растворенными в ней солями, кислотами или щелочами, графит и некоторые виды органических веществ. Тело человека также проводит электричество. Это можно показать на опыте с электроскопом. Зарядим электроскоп с помощью эбонитовой или стеклянной палочки, стрелка отклонится Затем дотронемся до заряженного электроскопа рукой. Стрелка тотчас вернётся в исходное положение – к нулю. Заряд с электроскопа уходит в наше тело. В данном опыте с небольшим зарядом это не опасно, но ощутимо «щёлкает» по пальцам. А большие заряды и токи опасны для жизни и здоровья.

Из металлов лучшие проводники электричества – серебро, медь, алюминий. Даже в обычной водопроводной воде растворено столько всевозможных солей, что она является весьма хорошим проводником, и об этом нельзя забывать, работая с электрооборудованием в условиях повышенной влажности иначе можно получить весьма ощутимый удар током, это опасно.

Проходя через живой организм электрический ток производит разные действия: термическое – ожоги определённых участков тела, нагрев кровеносных сосудов, крови, нервов; электролитическое (или химическое) – разложение крови и других органических жидкостей; биологическое – раздражение и возбуждение живых тканей организма, что сопровождается непроизвольными судорожными сокращением мышц, в том числе мышц сердца и лёгких. В результате всего этого могут возникнуть различные нарушения в организме вплоть до полной остановки работы сердца и лёгких.

Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному, так как в диэлектриках очень мало свободных заряженных частиц. Непроводниками электричества, или диэлектриками, являются эбонит, янтарь, фарфор, резина, различные пластмассы, шелк, капрон, масла, воздух (газы), стекло, плексиглас, сухое дерево и бумага. Изготовленные из диэлектриков тела называются ИЗОЛЯТОРАМИ (от итальянского слова ИЗОЛЯРО – уединять).

Проводники служат для передачи на расстояние электрической энергии (электрического тока), именно из них, в основном, изготавливаются высоковольтные электрические кабели, бытовая электропроводка. Изоляторы используются для обособления, изолирования проводников и обеспечения безопасности людей при работе с электроприборами. Для передачи электроэнергии необходимо собрать замкнутую электрическую цепь, в которую входят источник электрической энергии, проводники, по которым от этого источника электрический ток поступает к потребителям электрической энергии, и сами потребители.

При проведении опытов по электричеству всегда используются и проводники, и диэлектрики. Например, используя два электроскопа, мы зарядили один из них отрицательным зарядом, полученным на эбонитовой палочке при её трении о шерсть. При этом стрелка электроскопа отклонилась, показывая наличие заряда на нём. Если затем взять металлический стержень на изолирующей пластмассовой рукоятке и соединить заряженный электроскоп с незаряженным, то по проводящему ток стержню заряды частично перейдут на второй электроскоп , а вот разрядки электроскопа, как в случае его касания голой рукой, не происходит, так как рукоятка не проводит ток к руке человека. Именно поэтому рукоятки различных инструментов, например отвёрток, плоскогубцев, кусачек, делают из непроводящих материалов.

Основные меры защиты от поражения электрическим током:

• обеспечение недоступности токоведущих частей, находящихся под напряжением, для случайного прикосновения,

• защитное заземление, защитное отключение электроприборов;

• использование по возможности низких напряжений, особенно во влажных помещениях;

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector